
AD-A270 839Iii I I if lill I I II I

Technical Report 1410 Robust and Efficient

3D Recognition by Alignment

Tao D. Alte

MIT Artificial Intelligence Laboratory

"; ... ,•, - ),'i•, pli-blic rel y

93-24308
,- A Nl 111I, INi !I



Best
Avai~lable

Copy



Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704-0188

Pubic€ regcoio.• burden for $0' c0ie$(9 fl o0 intoforation -s ýstnsatod to ,e••lQe I hor oer rosiore "nnl"l$nq the t-0 fol '".f0n o i$r $•,u sctonf W,,$no clt soul,"

W hewing and mainAnsfalmn th'e la14 noele. and c0n'oleItmq and 'r"P-9n te'11~e~Iecy~on 0, nfr'4 on ' d <0- -','' -' A,oo th.% burd-n -itMae C, an, $'-, asp0(t 0 t.'s
1ollecttOn ol information. ,ncluding suuq Tstions for reduclnq thts 'fiold I'i Wa•$ h-A Q1tnon ,i4-. oua orus S_.,ir.•s. Ure$0rato for ( ntfo-a~tiOn Oneriti.ns andO .o40 s. 1215 leflerson

OansIýqI'ay. Suite 1204 '"A $Oinot . 1, 22202 4301 and to0h Qffi )Ir' kl I,niq,ým-n and 8ud,4et c'ao-ror licuct-0 Pr-[9-ýt (0 04 0 188), rror-n r- 21 5O

l. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 13. REPORT TYPE AND DATES COVERED

I September 1992 technical report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Robust and Efficient 3D Recognition by Alignment DACA76-85-C-O010
N00014-85-K-0124

6. AUTHOR(S)

Tao D. Alter

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Artificial Intelligence Laboratory
Massachusetts Institute of Technology AI-TR 1410
545 Technology Square
Cambridge, Massachusetts 02139

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESSIES) 10. SPONSORING, MONITORING
AGENCY REPORT NUMBER

Office of Naval Research
Information Systems
Arlington, Virginia 22217

11. SUPPLEMENTARY NOTES

None

1Za. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution of this document is unlimited

13. ABSTRACT (Maximum 200 words)

Alignment is a prevalent approach for recognizing three-dimensional objects in two-dimensional

images. Current implementations handle errors that are inherent in images in ad hoc ways. This
thesis shows that these errors can propagate and magnify through the alignment computations.
such that the ad hoc approaches may not work. In addition, a technique is given for tightly
bounding the propagated error, which can be used to make the recognition robust while still
being efficient. Further, the error bounds can be used to formally compute the likelihood that
a set of hypothesized matches between model and image features is correct.

The technique for bounding the propagated error makes use of a new solution to a fundamen-
tal problem in computer recognition, namely, the solution for 3D pose from three corresponding
points under weak-perspective projection. The new solution is intended to provide a fast means
of computing the error bounds. In deriving the new solution, this thesis gives a geometrical
interpretation to the problem, from which the situations are inferred where the solution does

not exist and is unstable.

14. SUBJECT TERMS 15. NUMBER OF PAGES

computer vision alignment 136
object recognition weak perspective 16. PRICE CODE

error models Dose estimation
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280-$50] Standard Form 298 (Rev 2-89)Pr•,crited by ANSI Stcl Z39.18

298-102



Block 13 continued:

Previous analyses of alignment have indicated that thie approaclh is sensitive to false p~osi-

tives, even in moderately-cluttered scenes. But these aapalyse' afjplied (oly to poinit feat UrIs.

whereas almost all alignment systems rely oln exteiided telat iros. siicl as Ii lie sepiiienits. for

verifying the presence of a model in the hiliage. ''his thesi, derives a new t'orniua for the
"-selectivitv" of a line feature. Tlhen. u.si ig the techil iqlle for 'o011plitil ig error houndls. it i1

demonstrated experimentally that tLe use of line seg-i(,otts signitic-ant.v reduces the expected

false positive rate. The extent of the improvement is that a;i aligiimeut systvii that correctly

handles propagated error is expected to remain releiale even inl si stlaitiallv-(I uttered scenes.

Accesioii For

mi~s CRAM&
D)i;K T/-\ L
LII :-• :2c0 d [_i

""-' .... 7t~j . ................... ..--A

U. t i,.ion I•

Av~abiltyCodes

Mvai ~:d (cor
Dist Special

S......... I mini...........is'.-N -mil!H itI



Robust and Efficient 3D Recognition by Alignment

Tao Danfiel Alter

Submiit ted' to t he lDepartimenti of' Electrical Engineering andl C ompu)ter' Sclience

oil Sept embller 8. I 992. lii partijal ttilfilliiieit of tlit(

reqfuiremenet s fo0r tlie( dlegree of'

Master of SclIiece

Abstract

Alignmienit is a prevalent approach for recognizing t hree-djmnensional obj ect s ini two-dimensionial
iimiages. Cuarrent im plemnent at ions handle errors thIat are inhlerent inl images in ad hoc ways. Thiis
thesis shows that these errors canl propagate andl magnify thIirou gh the alignment comiput at ions.

such thiat the a.( hoc approaches may not work. lin add~it ion. a tecliiiiqiie is given for tightly
boaunding thle prop~agat ed error. which can b~e usedl to make thle recognit ion robust w hife stiff
heinig efficient. Fuirt her. the( error lbouinds (-all b~e usedf to formnally comnput e thle likelihood t hat

a set of hypothbesized nmatches between itodel anid imiage fea~ttires is correct.

The technique for bounding tilie prop~agated1 error niakes- use of a. new solution to a faudamnen-
Ial prob~lemi inl comiputer recognition, namely. thle solutit on for :31) pose frontm t [tree corresponding

points und~er weak- perspect ive project~ion. The new solut ion is intendled to provide a fast ineans

of coumiputing the( error bounds. lin deriving the newv solution. this thesis gives a geomet(rical
interp~retation to thet prob~lemn. front which the situiations are inferred wvhere the( solut ion does
not exist andl is uinstable.

P~revious a~nal *yses of alignument have indicated that tilie approach is sensitive to false posi-

tives. even inl mloderately' -cluttered scenes. Bunt these analyses applied only to point feat are~s.

whereas almost all aligniment systenis rely onl extendedl featuares, such as line segmnwuts. for

verify, ing thle presence of' a miodel inl the 'image. This thlesis dlerives a. new forinula for the
"-selectivity' " of a line feature. Theit. uising thle technique for conputiting error bounds, it is

dlemionst rated exp~erimlenta~lly that the( use of line segments significantly reduces tilie exp~ect ed

false positive rate. The extent of tilie improvement is that anl alignmenit syi stenii that Correctly

handles p)ropagatedl error is exp~ected to remta~in reliable even in substantially-cluttered scenes.

Thesis, Supervisor: WA. Erfic L. Grimison

Title: Associate Professor. D~epart ment of ELect~rial Engineering and Computer Scienice



Acknowledgments

I would like to thank my advisor Eric Grimson for the direction he gave me. which
was essential for completing this thesis. In addition, I have benefited inmnensely fromn
conversations wit hi my friends at t lie At Lab. l)articularly Ronen Basri, Todd ('ass. D)avid
('hanen. David .Jacobs. .osv Luis Robles. Brian Subirana, Kah Ka" Stung, Paul Viola.
Sandy WXells. and Steve White. I am esl)ecially grateful to .Jose Luis Robles. for providing
great company to me innumeral)l many days and nights. and to my two offic'emates. Kah
Kay Sung and Sandy Wells. for always being so helpful and so nice. I want to mention my
good friends Honen Basri an(l Ibrahim Hajj-ahinad. for the many memorable adventures
we have had during my time at MIT. Finally, I thank my parents. Ronald and Arlene
Alter, for the endless support and love they have given mie my whole life, and I thank
my t)rot~hers Robin and Roy, just for being the great brothers they are.

This report describes research done at the Artificial Intelligence Laboratory if the Mas-
sachusetts Institute of Technology, and was funded in part by a National Defense Science
and Engineering Graduate Fellowship. and in part by the Defense Advanced Research
Projects Agency of the Department of Defense under Army contract number DACA76-
85-C-0010 and under Office of Naval Research contract N00014-85-K-0124.



Contents

1 Introduction 7

1.1 Problem Definition ........... .............................. 11

1.2 Representation ............. ................................ 11

1.3 Approach ................ .................................. 13

1.4 Background ............ .................................. 15

1.5 Overview.. .......... ................................... 19

2 3D Pose from 3 Points using Weak-Perspective 21

"2.1 The Perspective ý1ase .............. ............................. 23

2.2 Summary of 3D Pose and Direct Alignment ...... ................. 25

2.3 Discussion of 3D Pose ........... ............................ 27

2.A Existence and Uniqueness .......... .......................... 28

2.4.1 The true solution for scale ........ ...................... 32

2.4.2 The inverted solution for scale ....... .................... 33

2.5 Special Configurations of the Points ....... ..................... 35

2.5.1 Model triangle is parallel to the image plane ................. 35

2.5.2 Model triangle is perpendicular to the image plane ............. 35

2.5.3 Model triangle is a line ......... ........................ 36

2.6 Stability ............... ................................... 37

i _liiii



4 (CONTENTS

2.7 I)erixvation of D)irect Alignment ....................... 38

2.8 Review of Prev'ious Solutions ....................... 41

2.9 Presentation of Three Prev-ious Solutions .................. 4:1

"2.9. 1 O v-erview 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-

2.9.2 I1lhnan's method .......... ........................... 45

2.9.3 Htuttenlocher and llhman's method ....... ................. 17

2.9.41 Crimson, ttuttenlocher. and Alter's method ................ 50

2.9.5 Sumniary of the three computat lonls ........ .................. 53

"2.10 Conclusion .......... ................................... 55

3 Uncertainty in Point Features 57

3. 1 Bounded Error Model .......... ............................ 58

3.2 Uncertainty Circles for Bounding IUncertainty Regions ............... 38

3.3 Cases \Vhere Errors Are Greatest ....... ....................... 63

3.4 Computing ITncertainty Circles ........ ....................... 68

3.5 Expected Selectivity of Point Features ....... ................... 72

4 Uncertainty in Line Features 75

4.1 Line Uncertainty Regions ......... ........................... 75

4.2 Seleckivity of Line Features ......... .......................... 76

4.2.1 Non-overlapping uncertainty circles ...... ................. 76

4.2.2 Overlapping uncertainty circles ....... ................... 82

*4.2.3 Summary ............. .............................. 85

4.3 Expected Selectivities of Line Features ....... ................... 86

5 Sensitivity to False Positives 89

5.1 Limits on Scene Clutter ........... ........................... 90



('O,\'TE.\NT.'5

5.2 Accepting a l'artial M atch .......................... 90

5.3 ('onclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1

6 Likelihood of a Hypothesis 93

6.1 Forirmula for thlie Likelihood ........ .......................... 94

6.2 Modified Formula for the Likelihood ......... .................... 96

6-3 Smimary . ............. .................................. 98

6.1 l)recomputing tlie Likelihoods ....... ........................ ..99

6.5 l)iscussion. ......... ................................... 100

7 Conclusion 101

8 Future Work 103

A Rigid Transform between 3 Corresponding 3D Points 105

B Solving for the Scale Factor 107

B1.I Biquadratic for the Scale Factor ........ ....................... 107

13.2 Two Solutions for Scale ................................... 108

B.3 One Solution for Scale ........... ............................ 109

11.4 No Solutions for Scale ........... ............................ 110

B.5 Simplifying b2 - ac ........................... 110

C Generating Random Image and Model Points 113

C.1 Random Image Triples ......... ............................ 11:1

('.2 Random Model Triples ......... ............................ 114

('.3 Random Models ........................................ 11-1

D Computing Areas of the True Uncertainty Regions 115



('6.CNTENTS

E Areas and Volumes of Line Uncertainty Regions 117

E.1 I rue Area of a Line liiuertaintlvl Region.. ......................... 117

E.2 Integrating Areas to Volumes ................................. 120

F Recurrence Relation for the Likelihood of a Hypothesis 121



Chapter 1

Introduction

(oomputer vision is devoted to describing the contents of image,, obtained1 bv ally process
that involves vision. Such processes include sensing intensity images with ('('1) video
cameras and building depth maps using laser range-finders. Object recogzit ion Is a
subfield of computer vision whose goal is to find known objects in images. such as chairs.
mnachine parts. and people. Identifying an object as being one of a class, like "'chair."
turns out to be veriv hard. This is largely because it is diflicult to describe precisely what
is a chair, since chairs come in many forms and are identified partly Iy their Shape and
partly 1v their function. Even though it may be possible to describe a chair in terms
of qualitative properties like "has a back.' such descriptions are not precise enotgh for
computer recognit ion.

To circumvent this problem. researchers attempt to recognize specific object,', and.

particularly, objects that are rigid or have rigid parts. like chairs and machine parts:
Figs. 1-1 and 1-2 show some example objects. Additionally. researchers assume they are
giveii precise modf Is for the objects they wish to recognize. These models are expected
to contain geometric information about the fcaturds on the objects. such as corners and
edges. The information should include how the features are connected together and
how they appear when seen from different viewpoints. Recognizing objedts fromn such
geometrically-defined models is known as "model-based'" object recognition. Model-Ibased
recognition has been the paradigm for most object recognition research, and will be for
this work as well.

Given a set of object models. the task is to determine which of the modeled objects
are in the image. if any. and where they are. If there are not many models, recognition

• m~~mlmm Iiimmml lue III 7



(~11 I~iKU 1 L\'I?())! (LI0

Figure 1 -1I: Objects t hat are rigidI or have rigidI parts



Figure 1 -2: Objects t hat are rigid or have rigid1 part s
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canl proceed by looking for the objects one at a time. Even if there is ohil] one object to
recognize as being present or not. there are several factors that make doing so difficult.
The first is that an object appears differently depending on what viewloinl it is seen fron.,
and every appearance of the object corresponding to sonie viewpoint must be recognized
as all instance of the object. In addition. the features in images corresponding to the
model contain error. (file to artifacts such as inaccuracies in the imaging process. the
effects of illumination. and ambiguities in feature locations. For instance, in Fig. 1-1
the poor focu:-, and lighting make it difficult to see the 3D shape of the bookend. aId
the telephone edges that surround the keypad are several pixels wide. Furthermore. tihe
object of interest mayav be partially occluded, or may be difficult to discern because other
objects or the background look similar to it. For example. in Fig. 1-2 the telephone is
partially occluded bY the clamp and the flashlight, and. in addition. tihe back edges of
the phone blend in with the white background.

One popular approach to model-based recognition that attempts to account for these
problenis is tile -'alignment'* method. as described by Huttenlocher and Iilmnan [inut-
tenlochierSS] [Huttenlocher90]. The general idea of alignment is to break the recognition
process into two stages. The first stage uses limited information to /1qpo//?.iz view-
points from where an object might have been seen. For each viewpoint, Ihe second stage
COlll[)tLtes how the model would appear in the image if seen from that viewpoint. and]
then examines tlihe image to c' rifq if tihe corresponding hypothesis is correct.

Briefiv. the alignment approach uses the following mechanisms to address ilie 1)rob-
lenis mentioned above. To handle the fact that an\ view of the object could appear
in the image. the method tries all possible minimal sets of matches between model and
image features for hypotheses. where a minimal set contains just enough matches to
coml)ute the viewpoint from which the model was seen. To account for error in tile
image features. verification is performed by checking that the predicte(l appearance of
the model matches the image only approximately. The problen) of occlusion is handled
by generating hypotheses using features from the model ani( the image that are robiust
to partial occlusions, such as corner points and pieces of line segments. To (leal with
spurious features that arise from other objects and from the background. a bottonm-up
process is assumed that groups together image features that are likely to come from the
same object.

There are two major problenms with these mechanisins. however. First. thlie types of
features used for generating hypotheses are easily confused with similar features from
other objects. from shadows. and( from the background. For example. any un-modeled

I I I I II II I



1.1. PROBLEM DEFINITIOX 11

object in Fig. 1-1 or Fig. 1-2 caii contribute spurious line segments. as can the wood-
grain on the table in Fig. 1-1 and the highlights on tihe pencil sharpener in Fig. 1-2.
This may place an excessive burden the grouping process. or alternatel]. may lead to a
combiinatorial explosion in the number of minimal sets of matches to be verified.

lihe second problem is with the method used to account for error in the locations of
image features. The prIoblem is that the error can propagate and magnify through the
comiputations of the viewpoint and the ap)pearance of the model from the viewpoint. As
a result, the predicted appearance of tihe model may not be apl)roxinliately the same as
the image. but instead can b)e very different.

1.1 Problem Definition

In light of the mentioned problems. the objective of this thesis is to incorporate error
analysis into alignment-style recognition and use the error analysis to show how to build
an alignment system that is robust an([ efficient. As suggested above. the systeml is
intended to recognize a restricted but wide class of 3[) objects. specifically. rigid objects
with sharp edges. The object, are represented by a set of geomnetric models. which are
described in the next sect ion. For simlplicity. the systemn works with a small set of objects,
so the\- can be dealt with sequentially. As input. the system is given a 21) intensity image.
which may contain instances of the modeled objects. The goal is find all instances of the
niodeled objects in the image. or else state that none are there.

1.2 Representation

For models. the system expects to be given three data sets for each object: (1) a list
of (listinguishled points (corners, maxima. minima, and zeros of curvature). (2) a list of
extended edge features (line segments and curve segments). and (3) a complete odge
description. The first data set is for generating hypotheses, the second for checking them
quickly. and the third for verifying them carefully.

The third data set, the complete edge description. should consist of a small number
of point-by-point, viewer-centered. 3D edge maps. The edge ua.)s can be obtained
autonmatically from edge-based stereo or motion, or by a laser range-finder with a 3D edge
detector. In addition to shape information, the edge maps should include information
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about surface markings, which show tp i iintensity images. At this stage. there should
be little thresholding on the magnitudes and lengths of edges. The edge descript ions shall
be dense and noisy, but should contain enough useful inforniation so that the object is
easily identified.

About five views of each object probably are sufficient, in order to make sure at least
oMe view covers every part of the object. More views will be necessary if an object has
concavities that can loily be seen from a few viewpoints: still, in this case small images
should be sufficient to represent these aspects. and so rot much additional storage is
required. in order to predict t lie appearance of tlihe object from a novel viewpoint. it mav
be necessary to comil)nie information from different views. A simple way to (Io this is to
project t he entire contents of all the nearby views. The mail) prol)lem with I t his is t hat
the generated view Iliav contain edges that should nuot be visible. Oin the other hand, if
tibe edge maps contain sufficient 3D information for eliininat ing most hidden edges. t lhen
this prolblent will be minor.

The second data set. the extended edges. call be obtained bY fittiig relatively long
straight lines and curves to the :31) edge maps. The purpose of this stage is to find model

features that individuallv are useful for identifving the object. (Comipared to the densit y
of a oniplete edge map. there will be very few of this type of feature.

For the extended edges. the representation is expected to be object-centered. which
means that features shared by" different views must be comltbinled. Also. the viewpoints
from which the features were seeii should be stored with the feat ures. so that self-occlusion
can ibe largely accounted for. ('ombining features from different views Iliay rot be easy
unless the views are well-registered. Even if I lhey are not, it is possible to do this step bY
hand, since ntodel-building is off-line and there are not maniv extended features.

As a note on smoothly curved objects. the silhouettes should not be used in obtaaining
the extended features, although they may give strong edges. 'le reason is that the
silhouettes of smooth ol) ject s are ntot .tabli, that is. they canl change as the o!)ject rotates.

The extended features. on the other hand, are object-centered and may be seen from
widely different viewpoints.

Finally, the features for first data set. (list inguished points, can be extracted from
the extended edges, eitfher by intersecting lines or by finding extrenia and inflection
points on curves. There is a separate data set containing point feat ures because they v are
straightforward to match between a model and an image. In contrast. extended features
are likely to be b)roken u1) by the feature detector or be part ially occluded. The 1particular
point features used here (corners, extrema, and inflection points) were chosen because
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ev are stab•. i.e.. can be identified, under projection over a wide range of views (Note

,ouble meaning 'stable" here and al)ove.)

1.3 Approach

The algorithmi foi recognition that I propose is as follows. and is all extension of Hutten-

locher and Ullnan's:

1. Form groups of image and model features. and extract distinguished points from

these groups.

"2. Until there are no remaining pairs of triples, hypothesize a correspondence between

three grouped model points and three grouped image points.

(a) C(ompute the 3D pose of the model from the three-point correspondence.

(b) Predict the image positions of the extended features of the model using the
31) pose.

(c) Given the error in the image points, compute a region of uncertainty for each

predicted model feature that bounds the range of locations where the feature

could actually lie.

(d) Assign the three-point hypothesis a likelihood based on the uncertainty re-
gions. using a Bayesian inference mechanism.

(e) If the likelihood is high. select the edge maps of the model that were imaged
from nearby viewpoints. Then perform a careful verification by transforming
and projecting all of them into the image. which requires merging edges that
are t he same and eliminating edges that are hidden. Using uncertainty prop-
agation as a guide, count how much of the projected model contour occurs in
the image.

(f) If the hypothesis verifies, remove all the distinguished image points that have
been accounted for by the model from the current set of distinguished image

points.

3. Return the verified hypotheses.
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In this algorithm, triples of feature points are used to form h~vpotheses and comll)ute
poses. When such features are obtained from all image. they often come with local
orientation information, which this algorithm does not make use of. For example. a
feature point that is actually a corner might come with the line segmnents that were
intersected to find the corner, or a feature point that is actually a maximum or minimum
point on a curve segment, might come with an estimate of the tangent vector at that
maxinum or mininmm. This information could in t heory be used to fuirther constrain
the pose, or to do indexing (which is discussed below), so that all possible corresponding
model features would not have to be examined. Although these steps would be worthwhile
if properly (lone. it should be noted that local point features. even with orientation
information, are not very distinguishing. Indexing with such features would provide a
useful preprocessing step, but the brunt of the recognition problern would still remain:
so this is what the above algorithm concentrates on.

For the careful-verification stage (step 2e), the edge maps that were imaged from the
nearest viewpoints are used to predict the appearance of the model in the image. For
most edges. this is done by transforming and projecting the edge map point-by-point.
But for edges on the silhouettes of smooth objects, this does not work. since the bounding
contour changes even for small rotations. For these situations. Basri and I'llman have
suggested a method that. can be used to bring the silhouettes into the image when tile
change of viewpoint is not too large [Basri88].

There are two basic differences between the algorithm listed above and Huttenlocher
and ITllman's. First, Huttenlocher and Ullman's method has no formal notion of uncer-
tain,. in the feature data, whereas here handling uncertainty formally is an integral part
of the algorithm. This is necessary because a small perturbation in a few point features
can lead to a very different appearance of the model in the image. AlthoughI this situation
could be avoided by choosing points that are far apart on the object. current grouping
systems tend to locate points that are nearby. Consequently, sets of nearby points arise
often and would cause a system that deals with error in an ad hoc way to break.

The second difference from Huttenlocher and I TInan's method is the use of Bayesian
inference to throw away hypotheses that are unlikely. Huttenlocher and Ullman used a
heuristical approach to prune hypotheses quickly. In contrast,, the method here will be
derived from first principles, using knowledge of how" uncertainty propagates. As a result.
the method here is expected to be considerably more reliable.
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1.4 Background

The algorithm described in the preceding section for recognizing three-dinensional ob-
jects grew out of a number of approaches attempted in the past. Perhaps the best way
to argue for its efficacy, then. is to present the developinent that led to its selection.

To begin, let us consider the choice of features for generating hypotheses. Early
atteml)ts used relatively large features to obtain an initial match between a model and
an image. Examples of such features include convex polygons [Roberts65]. projections
of generalized cones [Brooks8l] [Biedermian85]. and moments of inertia of closed regions
[CyganskiM5] [Reeves89]. The advantages of large features are that there are only a
few of them in an image and they have few matches in the model. There is, however, a
fundamental problem with these types of features: They are sensitive to partial occlusions
and, as a result, cannot be extracted reliably from images.

To avoid this problem, it is common for recognition systems to extract small, local
features, such as points and line segments, and then to group these together to get sets
of features from the same object [Clark79] [Bolles82l [Bolles831 [Lowe851 [Thompson87l
[Horaud87] [Linainmaa88] [Lamdan88a] [Huttenlocher90]. Although many systems look
only for small groups of features, some of them try to find large ones. Finding large groups
is a distinct problem and has received much attention [Lowe85] [Jacobs87] [MohanSS]
[Horaud90] [Jacobs92]. As with large features, the advantage of large groups of features
is that there are few of them in the image and the model. Ideally. a system would gather
large groups of features. use them to index into a model database. and pull out exact lv
those models that contain feaLvres that call project to the features in that group. This
approach could lead to very fas' iecognition. and has been examined for point features
[Jacobs92].

Despite the potential gains from grouping and indexing with large groups. realistically
the chances are that groups will contain spurious features and be missing correct features,
and partial occlusions will make this problem much worse. In order to minimize the
chance of having spurious features in groups, most systems look for groups that are
small, though large enough to determine the pose of the model with respect to the data.
For example. these groups can be pairs of corners [ThomnpsonSVl, three-line junctions
[Horaud87], triples of points [Linainmaa,8] [LamdauSSa] (Huttenlocher90]. and triples of
lines [(Clark79] [Lowe85].

Even if only small groups are available, indexing is needed to rapidly handle small to
medium-sized libraries of objects. Given small groups. a model index table can be built
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such that all model groups which could produce a given image group can be imnmediately
extracted. For groups containing triples of points,. any Inodel point triple can produce
any image point triple under projection [Fischler8l] [if ut tenlocher.9O]. and so indexing
cannot help. For image groups with corners and junctions. the corresponding Ii1odel
groups will be somewhat constrained. but not substantially. since even these groups are
not very dist inguishing.

Still. it is possible to use the idea of Geometric Hashing to gain more power from
indexing [LarndanSSh]. To apply Geometric Htashing to 3D recognition from 2D images,
first project each model orthographically from all different points on a viewing sphere
to reduce the probleml to identifying flat models. Then, for each projection. take every'
triple of model points and, with respect to each triple, store coordinates of all the other
model points in an index table, along with the model triple, the viewpoint, and the
model. At recognition time. take every triple of image points and. with respect to each
triple. use the coordinates of every other image point to index into the table and pull
out all the model triples with those coordinates. To make the process more reliable. the
look-up table should be built with points drawn from groups in the model and indexed
wit h points drawn from large groups in the image.

Although performing indexing this way may often provide considerable filtering of hy-
potheses, it often will not., since, as mentioned. p oint features are not very (list inguishing.
The problem is that small sets of point features are easily confused with randomly-placed
points when there is a significant amount of clutter in the scene. which means that "false
positives" are likely. ([Grimson92b] gives an analysis of the likelihood of false positives
in Geometric Hashing for flat objects.) The chance of false positives is further increased
by taking all views of the model and, for each view, using all triples. As a consequence
of false positive problems, an indexing system should be backed up with a system that
tries all possible correspondences of model and image groups to find an initial match.

It may seem like a lot of work to try all possible corresponding model and image
groups. For point features matched between a 3D model and a 2D image. for instance.
the minimal size of a group is three [Fischler8l] [Hut~tenlocher90]: so using points means
trying all pairs of model and image triples, which, for i model points and , image points,
is an O(m31.S3 ) process. Nevertheless. consider again instead the possibility of using large
groups. Recall that the trouble with large groups is they are not reliable enough to do
indexing. Instead of using the groups for indexing, we can select triples of points from
them. as was suggested for Geometric Hashing. The idea is that an unreliable group
from the correct object should have at least three correct points. This would reduce the
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number of triples to try to a manageable level, because in would be the average nunl)er
of points iii a model group and ,s would be the average nulnl)er of points in an image
group. As a result, although the avsyniptotic complexity of O( , ) is considerable. with
grouping we can expect the number of possibilities in practice to be small enough that it
will be the constant time for checking a single match that decides whether the method
is feasible. More generally. thb, is the argument that for real recognition problems. the
constant factors often make the difference in whether an algorithm is efficient or not
[Grimnson90a].

For the reasons mentioned, bootstrapping recognition by considering all pairs of mini-
real sets of features is very popular. Since a minimal set of matched features is insufficient
to identify an object. the minimal sets are used to find larger sets. Most techniques that
do this can be divided into two broad classes, constrained search and transform cluster-
ing. Constrained search starts from each minimal hypothesis and repeatedly uses the
current set of matches to constrain the search for an additional mnatch, until a large set
of matches is found [Clark79] [Brooks8l] [Bolles82] [Goad83] [Grimson84j [Lowe85] [Ay-
ache86] [lioraud87]. Transform clustering, on the other hand, uses every correspondence
between a minimal set of model and image features individually to compute a model-
to-imnage transformation. and then counts the number of times each transformation is
repeated [Ballard81] [Turnev85] [Thomlpson87] [Linainlnaa881 [Cass90].

It is informative to review the miotivations behind these two classes of recognition
techniques. The idea of constrained search is clear, namely. to use a set of known matches
to find more matches. Due to uncertainty in the positions of the features, however,
this process can be difficult. since for each unmatched model feature there typically are
several image features to which it can match. To handle this reliably. many systems use
an extensive backtracking search [BollesS2] [(oadS3] [C rimsonS4] [HoraudS7].

The transform clustering approach avoids extensive search by noting that each cor-
rect match will independently vote for the correct transformation. so we can just let
all the matches vote and then take the transformation with the most votes. Usually.
this method is implemented by dividing transformation space into buckets, having each
match increment a counter in a bucket. and searching the space for the buckets with the
highest counts. In this form, the method is known as the "'generalized Hough transform"
[Ballard81].

-As a recognition technique, the generalized Htough transform has several difficulties:
(1 ) Unless the buckets are very small. the bucketing can lead to false peaks (false positives)
in transformation space, since buckets combine together different transforms. (2) A more
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serious difficulty is that for 3D recognition from 2D images. a transformation has six
degrees of freedom, which implies transformation space is six-dimensional: such a space
is impractical to store and to search. For this reason, these systems do not perform
a full Hough transform. but instead use separate spaces for subsets of the parameters.
The effect of using separate spaces is to increase again the likelihood of false positives.
(3) An additional problem is that the local features that typically are used to compute
transformations between 2D images and 31) models are prone to being confused with
spurious features in the image, which also can make the method prone to false positives.
(4) Furthernmore, it is difficult to handle uncertainty in the image feat ures used to compute
the transformation. Grimson et al. provide a way of obtaining bounds on the uncertainty
in transformation space [Grimson92a], but such overestimates further itreasc the fa! e
positive probability. (See [Crimsonog,] for an analysis of the false positive rates involved
with applying the generalized Hough transform.)

For the reasons mentioned. a more reasonable use of t he Hough transform is as a coarse
filter to produce sets of possibly corresponding model and image features [Grinson87].
Such a stage could help considerably when looking for matches between the model and
an entire image, but it may. however, not be useful if effective grouping is available.

The preceding techniques do a lot work after they are given an initial match in order to
find a large set of matches. Intuitively, this seems peculiar, since, up to some uncertainty
in the data, the initial match determines the pose of the model. It would seem, then.
that the preceding techniques are just pinning down the model pose more precisely. As
mentioned above, the reason this process is difficult is that each predicted model feature
potentially matches a number of image features. Nevertheless, to resolve this ambiguity it
may not be necessary to resort to constrained search or transform clustering. Instead. the
ambiguity could be resolved for all model features simultaneously, by physically moving
them in unison around the image. This can be done by moving the matched image
features around their error regions, while continually updating the image locations of
the predicted model features. The predicted model features are moved until a position
is found that consistently matches most of them to within the error regions of image
features. This method is equivalent to the current ly-used techniques, in the sense that it
will find the same set of consistent matches. At the same time. it should avoid the search
through correspondence space or transformation space that they incur.

Another way to improve on earlier recognition methods is to make use of the fact
that once the pose of the object is known. in theory the object's entire appearance in
the image can be predicted. That is, complete edge maps could be used, instead of just

S... , II I I I I I I I
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a sparse set of features. Tlhis o1)servation is tilte basis of [linai's iIdea of using l)ictorial
descript ions to recognize objects [['linanS9]. and is one of the main ideas behind the

recognition svstem built by luttenlocher and Ullinan [luttenilocher8] [Huttenlocher90].

A.lthough considerablly more accurate recognition can be achieved if complete edge

maps are used for verificat ion. t he expense in tiue of such all extensive verification would
Ibe prohiluitive if it had to be doile for all h*yl)ot heses. Inst ead. it is possible to tirst use he

set of sparse model features to filter out a large percentage of the hypotheses. Importantly.
we can do this without resolving for each predicted model feature to which of its nearby
image features it corresponds. Specifically. we cai compute a Bavesian estimate of the
prol)al)ility that a hypothesis is correct given the situation in thle image (see (Chapter (6).
Then. once most of the hypotheses have been filtered. careful verification using complete
edge maps can be performed.

III sum. a viable approach to recognition begins I)Y locating large groups of local
features in the image and the model. Then hypotheses can be formed bY selecting
triples of points from the groups and matching them. These matches are first checked
quickly using Bayesian inference to decide how likely they are. Then they are verified
carefully using detailed. viewer-cenutered edge maps. Also, this careful verification should
be augmented to account for uncertainty in the data by trying various projections of the
model.

1.5 Overview

Section 1.3 gave an algorithm for performing alignment-based recognitioi). The major
modules of the proffered alignment algorithm are ( 1 ) grouping. (2) 3D pose computation
and alignment of model features. (3) computing the likelihood of a hypothesis. and (1)
careful and accurate verification.

This thesis focuses on the second and third modules. In the alignment algorithm.
these modules constitute steps 2a-2d. The reason the grouping stage is not studied
is that. as noted earlier, it is a distinct problem which is receiving much attention in
the literature. By showing how to build a reliable recognition system independent of

grouping, we may be able to infer how much is expected from a grouping stage in terms
of reliable groups.

The fourth module is also a distinct prolblem. because it uses a different representation
than the second and third modules use. In particular. the second and third modules use
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sparse, object-cenltere(l feat ures, such i as points atn(I linle segments. to gelerate hypotheses.
to collI)Iite poses. and to assign likelihoods, hI Coutrast. the fourtI module uses detailed.
\iewer-ceiitered edge maps to perform careful verificat ioll. II fact. we first t 1iihee 1110(1milles
comlnprise ali alignmnent system bv themnselves. since for nlianv objects a sparse set of

extended featuires is suflic(ieit to ident ifv them.

('ha pter 2 gives a new met1od for computing 3l) p)ose frollm thlree correspoonding
points and aligning a model to ali Image. The method is intended to he faster than

earlier approaches, which is importanit because tile pose (comlp)utation is repeated manjy
tiies. In addition, the solution is proved to be correct an(l is explained geometricall]'V.

Firtheirmore. earlier solutions to the problem are presented and coimparei. In a(ldition.

the stabilities of both the new and earlier solutions are analyzed.

(Chapter 3 shows how to compute uncertainty regions for )oiilnt featurvs. and their
select ivit ies. Computing the uncertainty regions quickly dep)ends criticallv on the fast
3D pose computation of Chapter 2. Chapter 4 extends the analysis to line segments.

(Chapter 5( discusses how to use the expected selectivities for deriving fkrmal t lhresholds
for verificatiou and(] for deciding how muchi scene clutter is acceptable. ('hapter 6 derive's

a measure for ranking the hypotheses, using the selectivity formulas of (Chapters 3 and 1.
LastlY. ('hapter 7 is the conclusion, and Chapter 8 ment ions future work.

Su nu a is u I I I I II I



Chapter 2

3D Pose from 3 Points using

Weak- Perspective

This chapter gives a new inet hod for Iperf'orniltg st eps 2a andI 21 of' the aligniment algo-
it lini (Section 1.*3). Specifically. this chiapt er shows how to comnpute tihe .:3I) pose of' a

modele front three c'orresp)onding Inodlel andl imiage p)oint s (step 2a ). and how to use t ie

pose solution to comp1 ut e the Image posit ion of' ally nnmnat che ie odlel p)oint . For s't ej
21h. the imiage positions of t he extended modlel feat ures ('all be (ompI)lled using Ipoilt .
like the( eiidpoints of a line segmient. In addition. t ie( next chapter shows. that i lie so-
lution for the iniage posit ion of anl unmiatclied miodel p~oint is also wiehil f'or step 2c of
the alignment algorithm,. in which the uncert aimit regions for the predicted inodel f'ea-
timres are comp~utedl. More generally, the poseC solution is useful for manmy app1roaches to
obJect recognition. such as constrained search andl transform clustering (pose clustering)
(Section 1.4). This is because these approaches frequent ly use corresp~ondlences bet ween
nilinimal sets of model and imiage feat ures to complute poses of the miodel.

For complut ing po0ses of :31) object~s front 21) imiages. a model of project ion mumst
beC selected, and typ~ically either persp~ective or "wea~k- perspect ivxe- project ion is chosen.
W-eak-perspective p)roject ion is anl ort hographiic projection plus a scaling, which serves

tc- ap~proxima~te p)erspective projection 1) assuming t hat all points on a 3D1 object are at
roughly the same dlistance fromt the camiera. The( justification for using weak-perspective
is that in mnany cases it approximates p~erspective closely'. tin particuilar if thle size of
t~he miodel in depth is smiall compared to the depth of the mnodel centroid. For bothl
p~erspective and weak- perspective, thie minimal number of points needled 1.o compuite a

21
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Mod)(el p~ose 11p to a fini1te iiiiiiiiber of solut ions I-, hree [Fiscliler8'l [ lIntI teiiloclir(M]. 1'oi

poliii et [Ctimre. I heii. t he prob~lemi is to deteriiiine Ihle pose of' I liree jPoilits II spic gjVC&

tiree corresponin~iig limage points~. \\elei perspect ive( project ion i-'I lie lliagiliig mlodelI.

tilt problemi is known as the "'perspect ive thiree-poitit jprojl~leli [Fisclilers I]. \\leii weak-

ersjpect i ye is used. I slhallI call thef( problemtIf(i 11w*xeak- persj wct i ye lI i11ce- poli t problem."

Al thI ouglh perspective (celt ral ) project loll is, a ii or(' acciurat e miodel . nui iieirolu, ic-

sea rchiers hav~e n..ed weak- perspect i e project ioll inlst ead I lol wrt, s5] [ I'aniadc$S3] [( vgaii-
skiSS] [( vgaiiskiOrrS8] [lhioiipsouisi] [1 hlmialisb] [Vi lmuauS91 [LamndaniSsa] [Lamdnaw~sshj
[11 uttecii ochersvs] [Hasii8s) [11 fit I ciilochle90)J [I'1luiianii] I [.Jacobs9 IJ [( riiiisoi92aj [ ii

soni92l ]. Thle reason Is t hat 1there are S0uIIW adv anutages to iusinig weak-p ersp ect 1 e u istead
of perspect i e. Iii part 1(11 a r. (01 ii lit at lollis inivol vinug wek irpc eoleiare less coin-
plicat ed. Ili adlditilon. thle weak-perspective uiat Iiimodel 'is conceptunally simpler. suitle it

I ises, oirthiogra ph ic inlstcad of' perspect ive project ion. An uio er ad \aiitage is that we (t

nlot nieed to( know thle camera focal lengthi or. (cente ('joiiut Fuirt her. thle effect oiloh
ject recognitiloll of errors III t lie Imuage polint s has been st iudied onud' for weak-persp ectilye
project ioll [( ost a!Ifl [.1acobsls)I] [La iidi~lau!) [R~igolulsos9 I] [( rilinsou92a[.

Thiis Chiapt er p~rovid es a new a pproaclh to( recovering thle pose for weak- I('rsj)('(t i y
jpro~ject loll. which leads to at solut1ion (mlethod) that is Hit nilt IeYsiluipler thalua earlier
uinethlo(Is [l\aiia(I(S.3 [hi t ten loclier8711 [CYvganuskis8] [11 tit t eiiloclvier9tt [( rii isoii9 2lj Th[le
a pproachi here Is iiot ivat ed geonuictriica IIy. whlereas earlier m ethiods, t Y i'a Ilv ar icI ased
oii algeb~raic coiist rainuts (herived froim tlie, rigdilit of 311) rot ations. Addi ioiial lv. tlie

geouiniet c a pproacli makes it easier to view what happens for special configugiratlouis of'
thle poinuts ( Sect ion 2.5).

A review of previolus iiethlodls alouig, with Ii a Iuiifiedl presenitat ion of' their soliut ions" is

giveii iii Sect ionus 2.8ý anid 2.9. 1i filt cii lochle and U1lliiaii [hhult en locheier9] proved thIat lie
p~ose solutlion exists and is unliuue. which also is dolue here (Sect ion 2.1I). '[lie sollut0ion
here nulost resembilles 1 iliiiaii's [1 lhuuiaii8(i] [lluttenlocluer,87]. iii t hat bothI end tipj haviiig
to solve thle samle himpiadrat ic equaltion. altliougli each dleriyes 1 lie biquadratl dc(iffereiflt '.

IUilike I'llman's solut ]io. I his chapter resolves whlichi of' t lie tIwo iioui-equiivalviit soluit ionis
to t lie biqf iadrat tic is correct. AlIso. it expla ins graphical lv x%'iv.\ Ihe solult iouis arise and1( to(

what geomet r-\ each correspoiids (Sectilon 2.-1).

Iii add~it ion to providIing a geoiiit nc ititerlpretal ion, the solut ion ini this chapter leads
to dIirect expjressions for thle tbe Iinemat chief muodel j)oinit 5lii caniera-cent eredl coorl di at es
as WCH~ as aii expressioni for thle image p~osit ion of any additional. unmilatchied model poiiit
(Sectilou 2.7). Ini conitrast,. earlier methlods, all reqjuire thle iiteit(niledial e coinftit ationl of
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a miod(el-t,(-image transformat ion. Specifically. earlier solut iow(.1, ,comiputel ail initial t Iran-l

formation that Ibrinigs the mioel inuto inmiage coor•in Iiates. aid then coipulte' ail addit ioinal

tranisformnation tu align thle matched model puint.s to their correspolding ilflag(e poi11s.

This is Il'eariingfll b~e('ause •iany recognition •'slenis (inlc(ling thei alignm•int algorit hini
inl Secti 0ot l 1.3) cauhilate the 3li 1)o ,;, souiti mu iiany t imjes while searchlinlg for the ore('ct

1pose of thle modelI [liscllerSl] [Tlh,,ll,.onT7 ] [lluttenloclhre7] [LiiuaiimaaS8] [ltiti,11-

loch'rl9l] [.iaco.s9l] [I'llinaui91]. (Consequeintly. avoiding the intermediate calculation of

tlh' transflormation (oil ca(us snuch systemii tio rtuo faster.

2.1 The Perspective Case

there is ail intrinic igeoietrv that und(erlie'. the p~erspectivye thliree-ploint lpl'ol)lem: it

is showi in Fig. 2-1. In the figure. the three i umodel poiits. 1-1,. im . atid t ,. ar' being

pr'i5p),cct iv\ly projected onto, tI liree iiiage 1)oint s. i.- all i,. via liQies through tie (clii r
of p)rojectiloll (('eit er point ) T. t. [he task is to recover m i. l. auid r 2. Thie essen tial

inIformiiation is codt aimnieI ill We side lengths and anghl.s of the s"urrotliuig tetrah"idroi.
As. icitred in Fig. 2-1. i will work in caiera-ceit'ere(d ('oor(dinat es with the cent ir

pomint at the origin and the line of'f sight along tie : axis. LAooking at thle esselntial
paranmect e'rs. t hle (list anices 1uh. hIN2. and l1t2 co'ni from tle ohiginal. trot ransf,)rie(d ilo(hl
poinits. Also. 1lie ai•glbs Oui. 0u2. ald(l 0 12 can h)e cOmiijlit(l from t ie( posit ons of Oli image

points. tlie local lentgth. anil the center point. lo see this. let .1" eqilial thie folcal length.
amil I lehem inage points 1. "12 he ext ended as follows: (r. qy) (.ry.j..). 1Then1

, IsO1  = u . ("5 0I2 , '1,. (0'12icos01 11 ' 2.1

wvh(ere in geiieral ý denotes tie unit vector ill thle (directtion of F". The problem is to

(letternli ii a. h. aIid ,giveii t1- /?02-. 1 i 2- ('o.)0 0w. coS1 0,. and (coS O2- |From the Pictilre.
we see bY tie law of' cosines that

(I + b" - 2ab cos 0 - 1 112 (2.2)
,/2 + (' - 2ac cos 002 = 802

1)2 + c.2 - 2bccos 012 = 1?`2 V1)

Over ti ue. thI ere have b)eeln many solutions to the problemt. all of which start with tlile

above, e(jiat ions. The solut ions (differ in how,, in'anili-ttc tle (fuat ithey whe1n solving
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F~igur t 2-1: Model poi.ts in0 . n7 ] anl(in2 undeigoing perspective projection to

produce Iflhg2 j)OHI~tS /- 1 '] -i all( 1i2. a. b. and( c are (list ances from the center p~oint.

F). to thle mo-el points.
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for the unknowns. Recentl v, Haralick et al. reviewed t lie various solutions and examined
their stabilities [flaralick9l].

Given a1. b. and c. we easilY ('all conluipite the 31) locations of the iiiodel poilits:

/;1o = (I , flo 1, = ,l, 171 c 1. (2.5)

If a 31) rigid trainsftormation is desired. it can be determiniedl from the original 31) niodel
points and the 31) camera-centered model points j.lst comp)uted. A simple method for
(doing so is given in Appendix A: for a least-squares solution. see [1lornS6].

2.2 Summary of 3D Pose and Direct Alignment

Similar to the perspective case, there is an intrinsic geometry underlying the weak-
perspective tlree-point problem, shown in Fig. 2-2. The picture shows the three model
points b)eing I)rojected orthograhlhi('ally onto the plane that contains trio and is parallel
to the image plane, and then shows them being scaled down into the image. In addition.
the picture shows the model points first being scaled down and then projected onto tile

image plane. In each case. the projection is rel)resented by a solid with right angles as
shown. The smaller solid is a scaledl-down version of the larger. The relevant information
consists of tlie side lengths of the solids and the scale factor.

For reference. t his section summarizes how to compute the locations of tile three
matched model points and the image location of anl. additional. Unmatched model point.
The expressions will be discussed in Section 2.3 and derive(d in Secs. 2.-A and 2.7. Let the
distances between the mo(del points b)e (ROI - R02, R 12 ). aind the corresponding distances
between the image points be (doi. (02. dl2). Also let

al = (Rot + R0 2 + R 12)(-Rol + R02 + R12 )(R(Jl - R02 + RU2 )(ROI + R 0 2 - R12 )

b) (I=(-d + R102 + R12 + d 2 (I 1 - ROL + 1~2 ) + d'12~(R21 + R02 - p12)

R I? doI + ,02 + d12 ) + Ro2(f 10 - (412 + d12) + R12 M + ( 02 - d] 2)

c = (d 1 + (102 + (d1 2)(-dw + do02 + di 2)(do1 - d02 + dl2 )(d0 1 + d(02 - a112 )

if d-),K+ 02 - + R22 - R 2 ){r = -1 0 0herwise.

Then if a - 0 (otherwise see Section 2.5.3), the unknown parameters of the geometry in
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Figure 2-2: Model points i, 0 . ii 1 . and i7 2 undergoing ort4hograplinc projectlon 10lus scale
to produce image points io. iz. and i2.

Fig. 2-2 are

. b + , - c (2.6 )

(I

(11,12 ± (.j1?o7 d(2) 17V.(ý 02)2 (1(2) (2.7)

(111.112) -(h 1 .h2) (2.8)

(Iii practice, l, - (IC2 shouhl be used for the inner radicand in Equation 2.6, b)ecause

numerical roundoff error can cause it to become negative.)



2.3. DISCUSSION OF' 3D POSE 27

Given, image points 1.i = (.ro, ye). TI = (-I* ,Y ). a( 1)2 (.12.- Y2). the pose solutionl can
be used to compute the 3D locations of tihte model points in camera-centered coordinates:

1 1 1
trio (.1,0!.Y. 1') -75 = -(,z,1. !hi. II + r) I = -(.r12 ./. Y 2 - w), (2.9)

where t" is an unknown offset in a direction normal to the image plane. It is worth not inn

tlial if the 3D rigid transform that brings the model into camera-centered coordinates

is desired. it call be computed front these three camera-centered model points and the

original three model points. The unknown offset w drops out when computing the rota-

lion and remains onhl in the - coordinate of the translation. which cannot be recovered.

As mentioned in Section 2.1, a simple method foir computing the transform is given ill

Appendix A. and a least-squares solution is given in [HornS6].

Next. I give an expression for the image location of a fourth model point. Originally.

the models points are in some arbitrary model coordinate frame. Also. the image points

are in a camera-centered coordinate frame in which the image serves as the .r-y plane.

Denote the original, Untrans'formed model points by ;3., to distinguish them from the
camera-centered model points ,i~ shown in Fig. 2-2. Using /7o. jin. and t72. solve the
following vector equation for the *'extended affine coordinates.*' (. ," ), of ff3:

1P3 = o(A, - 1P) + ;(I 2 - A0) + (At - 1i0) X (/2 - ;) + r)O (2.10)

Let ,am = XI - ,o, Yo0 = .YI - YO., a'02 = -2 - .r0, and Y.02 = Y2 - Yo. Then the image

location of the transformed and projected p3 is

(a.r 0 1 + 3.'02 + "(.qoH 2 - Y02Hi) + ,.o, Oa + + 3yo2 + "(-xrH 2 + .r-02H) + yo). (2.11)

2.3 Discussion of 3D Pose

Section 2.4 will show the following results, in addition to deriving the 3D pose solution

given in the last section. The pose solution has a two-way ambiguity unless hI and h2

are zero (Equation 2.7). The ambiguity corresponds to a reflection about a plane parallel

to the image plane. When h, = h2 = 0. the model triangle (the triangle defined by the

three model points) is parallel to the image triangle (the triangle defined by the three

image points). As a note, a and c measure sixteen times the squares of the areas of

the model and image triangles, respectively. Further, the solution fails when the model
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:2 2
h 2 h

SR02 2 sFS 2
d sRo: h. sR0 : h

do2.
d2 d0 2  d

d 0 :
do_ do_

Figure 2-3: Orthographic projection plus scale of a model triangle into an image.

triangle degenerates to a line, in which case a = 0; in fact. this is the only instance in
which a solution may not exist (Section 2.5.3). Note that no such restriction is placed on
the image triangle: so the image points may be collinear. Note also that no restrictijonl
is placed on the shape of the triangles, although the triangles in Fig. 2-2 are acute. For
illustration, Fig. 2-3 right shows a picture for when the model triangle is acute and the
image triangle is not. along with the smaller solid from Fig. 2-2.

Next. notice that all that is pertinent to recovering the 3D pose of the model are the
distances between the model and image points, not their locations. Previous solutions
have used the actual locations of the points to comp)ute the pose. after first appllving a
rigid transformation to put the three model points in the image plane [IluttenlocherS7]
[Huttenlocher90] [Grimson92a].

In terms of the ordering of the points, the symmetry in Equations 2.6-2.6 shows that
the scale factor is the same, independent of the ordering. Previous methods that are based
on the coordinates of !';, points after some initial transformations make this syvmmetry
unclear. For the altitu&, - H, and H2 (or hi and h2 ), we can see from Fig. 2-2 how the
different orderings are related: In Fig. 2-2 the solution is based at irio. and the altitudes
are H, for Ir I. 12 for iri2 . and 0 for i/io. For a solution base(] at 77il, the altitudes become
0 for iij. H2 - H1 for 17?2, an-d -HI for i77i. For a solution based at Iri2 . the altitudes
become H, - H2 for •¾. 0 for 172, and -H2 for 7;1.

2.4 Existence and Uniqueness

This section derives the 3D pose solution and shows that the solution exists for all sets of
model and image points except when the model points are collinear, and that the solution
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is alwa iis ullique. III deriving t ie 31) pose solt loll. I st art wit h t he b)asic geolilet r ' vr t hle
weak-pei'spect ive t iree-point problem. shown II Fig. 2-3. There are I luiee right triangles
iII each solid. from which t hiree constrailnts can be generated:

/,I + d21  - (.,/ ,,)1 (2.12)

/1 + d2(, (.442) (2.13)

h-h ")2+df = (.,tl2)2 (2.1.1)

The dlistalices AM. 1?02. 112. d(1. do02. d(12 ali(l Ilie, scale fact'or , are all positive. bit I lie
altitudes hl. h2 along with Ill. H2 are signed. Since /th and h/2 are signed. having "'h -hf2
ini te t t hird equat ion is aii arlbit rarv choice over -/II + h2": it Was (ihoseni 1)ecaulse. \'lhell

hI and h_, are iposit ive. it (irect lY corresloiils to t he pict ures in Fig. 2-3.

INItItiplying the third equation bv -I and adldinig all three gives

2h,,/, =~ .,h;• 1 ± 11 + ,:-/f)2- (, 1 + do2 - d,,).2 (2.15)

Squaring and using the first two equations again to eliminate hC aiid h 2. we have

01 - 0 0d1)(. 0 d(- 2) 2 (. z(Rl)2 + 1?t 2 - If 2 ) (dui+ - 02 d1 2 ))(

which, after some mainipulat ion. leads to a hiquadrat ic in .s (for det ails see A)ppendix !. 1):

(I" - 26.2 + c = 0. (2.17)

whlere

4 1?2 1102 - 1?2 ± 1?2 1?2, ~2
02 12)I

- (+tw ± 1?02 + f?12)(1-0l + 1102 + 1R 1 )(lRo0 - Ro?2 + MA)( 101 + 1102 - 1?12)
d2= tI1ldo + [R02 211 - (R1 + 1 r2 -11f 2 )(d11 + do2 _ (122_?2 02 + 2 ?() 0 0 - 1 )0

- , 1,(-21•1 + ?2 + If) + ,g2('•, - +1 J) + df(Iho, +/0o 1

0 I?•,(-,g, + 2 + +, 2 ) + 0o.2(do, - 1'02 + 12) + di 2(d 0, + d,22 '?'1 )

-=1 do)i + (10)

= (do, + (102 + d12)(-d 0 1 + d02 + d12)(d01 - d(12 + d12 )(do, + do-2 - di2)

In Fig. 2-2. let o deiolte tlie angle between flI - 7710 and (ý12 - 1710, and let z; b~e the angle
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between I1 -I and i2 - i0. Notice 1w tihe law of cosines that

a = -HRR2-2 - (2RolRoR2 coso) 2  14(R01 BI0sino)2 (2.18)
& 2(2~RodU2 + 2 R 2dot (2 Ro 1 o2 cos o) (2do 1(/2 Cos )

2(Ro~ldlo22 + R02dl - 21 Ro Io 2doIdo2 cos ocos t(2.19)
c 2 Ad2 1d22 - (2doldo2 cos u')2  = ((Ido2 siln ,)I (2.20)

Furt her, t RI? 02 sin o e(quals the area of the model triangle, so that a measures sixteeni
tinies the square of the area of the model triangle. Analogously. c mleasures sixteen times
thei square of the area of the image triangle.

The biquadratic in Equat ion 2.17 is equivalent to thie one originally derived bY I['lman.
But Uhllman made no attempt to interpret or decide aniong its soltions, which will he
dlone here. We are intereste(d only in positive. real solutions for ., the scale factor. In
general. the positive solutions of the biquadratic are given by

= b+ v//)2 
- at (2.21)

(I

Depending on the radicands. there will be zero, one. or two rea-l solutions. Particularlv.
we are interested in whether each number of solutions call arise. and. if so. to what tile
solutions corresl)ond geometrically.

In what follows. I assume that the model triangle is not degenerate. that is. not simply
a line or a point. This situation is the only time the solution is not guaranteed to exist
(see Section 2.5.3). Note that this assumption implies that a : 0 and o : 0. 7.

To begin, let us determine the signs of a. b. and c. From Equations 2.18 and 2.20.
clearly a > 0 and c > 0. From Equation 2.19. it is straightforward to see that b > 0.
since

2(~2  2 d2
-

1)= (1?;)do,2 + R02'oI - 2Rol//o2doldo2 coS0 -o t")
>2 2( 1

> 2(101d02 + Ro2 0 21? 02 do201d02) since cos o < 1 cost' u <
= 2(Roldo2 - Ro2dol) 2  > 0

Via some algebra (given in Appendix B.5). it call be shown that

12- ac= 4 (Roldo2) (/2 o+ + ) - coo- ( t0 + I) . (2.22)
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/where ' 1 which leads to W2 - tc > 0 (see Appendix B. 1). From t his fact and t hal
v R 0 1 o10 2 "

at > 0. h > 0. anid c > (0, we (-all derive that there are ill general two sohlitllons for ., withi

a single special case when 2 - ac= 0. which (call be seeii as follows:

h2 - ac> 0 = h+ ± - ac > 0. silice 4>0 and ac_> 0

> 0. siince a > 0

[Hence l. which gives one or two solutions for the biquadratic. depending

on whether h2 - ac is equal to zero or is positive.

Next I show that of the two solutions for the scale. exactlv one of them is valid. that

is. correspotnds to all orthogralphi p)rojection of the model t)oints onto the image poilits.

Furthermore. the other solution arises from inverting the model and image (listan(ces in

Fig 2-2. Iln addition, there being one soluttion for scale corresponds to the special case in

which the model triangle is larallel to the image plane. The following proposit ioi will

be used to establish these claims.

Proposition 1: Let

•Sl b - -c 2 = (2.23)

Then

, < d0  2  < .'2 (2.2-1)

Ro' R02

Proof: .S and .N2 are solutions to the biquadratic in Equaltion 2.17. Since a > 0.

the quadratic function in s2 on the left-hand side of Equation 2.17 is concave up and.

consequently. is negative exactly in the interval betweeni the zeroes s2 and .. Further.

bv substitution it can be seen that this function takes on negative valhes for .*2

a1l . 2 =,(,-)- (see Appendix B.2). Since the scale factors and the distances are non-

negative, this immediately gives that - and -2- lie betweel 's! and .S2-
C 1 H0213
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2.4.1 The true solution for scale

Here it is slhown that exactl v one of the two solutions 'oi scale call sat isfy the geomliet ry
shown in Fig. 2-2. aid it is always the same one. If the two solulions are the saiiie. tihen
hot h solut ions can sat isfv t lie geoiiiet rv (t his case is discussed iII Sect ioul 2.5. 1 ). As will

Ibe seen, the valid solution is

2 + = - (2.2

Note that proving this stateiient establishes the existence and uniqueness of tlie pose

soliit ion.

In Fig. 2-3. (.s(ui) 2 
- d - h• _ 0 and (.-SI02)2 - d(1 - > 0. whic implies that

any solution .' sat isfies < < .• and < ,i. Consequently. Proposition I implies thatHoL -- 0 2

is the only possible solution.

The question remains whether *`2 is itself a solution. The fact that it satistie, thie
biquadratic is not sufficient since the squaring used to obtain Equation 2.16 froni Equa-
tion 2.13 may not l)e reversible. Yet we (1o know .,2 satisfies Equation 2.16. because the
steps from Equation 2.16 to Equation 2.21 are reversible. Consequently. Equation 2.15
will be satisfied if the sign of h 2 relative to h1 is chosen accordingly. Let (T be t lie sign of

h2 when tile sign of h1 is 1. and -e" be h2 's sign when hl's sign is -1. Then unless the
right-hand side of this equation is 0. Equation 2.15 is satisfied 11

- if d', + ~'2 d d2 > IS2(f2 ±R 2 - 12)

If on the other hand .2( I - I - W12) d•2 - - do2. then Equation 2.1.5 implies

hi or h2 is 0. so that, the sign of h2 relative to h, is arbitrary.

Notice that the collective sign of hi and /12 Is still free. and so there is a two-way
ambiguity in the pairs (IhII h2) and (HI, H12). As can be seen in Fig. 2-2. the ambiguity
geoniet rically corresponds to a flip of the plane containing the space points 1n0 . m1 1. and
1ý12. The flip is about a. plane in space that is parallel to the image plane. but which
plane it is cannot be determined since the problem gives no information about offsets of
the model in the : direction. Due to the reflection, for planar objects the two solutions
are equivalent. in that they give the same image points when projected. On the )ther
hand. for non-planar objects the two solutions project to two different sets of points.
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There is a special case. as mentioned above, when the sign of h, is arbitrary relative

to the sign of h/1 . In this case. the right-hand side of Equation 2.1.5 is zero. and this

implies that h, or 1, is zero also. Looking at Fig. 2-2. geometrically what is occurring

is that one of the sides of the model triangle that eiaianates from tr 0 lies parallel to the

image plane. so that the reflective ambiguity is obtained (Y freel" changing the sign of

t he iton-zero altitude.

2.4.2 The inverted solution for scale

Of the two solutions for scale that satisfy the biquadratic. we know that ,2 corresponds

to the geometry in Fig. 2-2. but what ab•out .,? U1sing a similar argument to that use(d

to prove S2 is a solution for the weak-perspectiive geometry, we call infer a geometric

interpretation for .1 Consider. then, .• = .i The interpretat ion I will derive satisfies

the equatlions.
1 + Ruj I (MO (2.26)

H21 + Ro'2 = (rd/)2 (2.27)

(HI - 11 )2 + R' 2 = (M1) 2  (2.28)

where r ! Observe that r -L and .,2 have similar forms (compare to Equation 2.25):
S S1

- (1 - (IC C (2.29)

b2 2

To begin the derivation. Proposition I gives that d2 - (.o/__)2 > 0 aid d" - (.hr2 ) >

0. which implies we can set 0 = d (R 0 , )2 and ,] = (Io2 -(.sRo
2 . l)ividing through

bv ,;2 gives Equations 2.26 and 2.27. Since ; satisfies Equat ion 2.16 (for t he same reason
L' .6wt 2 and 112 toOban2

2 did). we can substitute into Equation 2.16 with obtain (h 1  h2)

d12 - 1,R2, where the sign of h2 relative to h, is 1 if d 0, 2 --d1 2 > .(R 2 l + R02- 12).

and -1 otherwise. Dividing through by s 2 gives Equation 2.28. and so the derivation is
completed.

Geometrically. Equation 2.26 forms a right triangle with sides HI, and Rol. and hy-

potenuse rd01 . Analogously. Equations 2.27 and 2.28 imply right triangles as well. The

interpretation is displayed in Fig. 2-4. Another way to see what is occurring geonietrically

is to note that the roles of the model and image distances from Equations 2.12-2.14 are
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m,° R:2 m,.

H,
RO2

r0d, rd.o2  H-

Figu re 2-I ( eozmetrically nitlerpret ing the i 'ered solutioit for scale

rd'2

H.

rd,, 
rd 02

~n. H,

RO R
m 2

M0° R0 2 Om2

Figure 2-5: Geometrically interpreting the inverted solution for scale

invertedl in Equations 2.26-2.28. In effect, what is happening is trhat instead of scaling
down the model triangle and projecting it ort hographically onto the image triangle, the

image triangle is being scaled uI) and projectled orthogral)hically onto the model triangle.
where orthographically means projected along rays that are perp)endicular to the model
triangle. This means we can rotate the solid in Fig. 2-4 so that the three model points
are in the image plane. and. as shown in Fig. 2-5. ol)tailn for the inverted solution a
weak-perspective geometry that is analogous to the true geometry.
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2.5 Special Configurations of the Points

2.5.1 Model triangle is parallel to the image plane

"Tlie two solutions tor tihe' t(a l'actor are l thi e I allea wieitl 1- - 0w-= 0. ailt( lere(' I (11li0,0-

st rate that getlilet ricallY Ihis (o1resl)o.i(ls to ti, li'e :'all ((Joit awinig the 1hr(e iModel poiiln

Il'igl.• paralle'l to Ilie ilimage FIalie. Blefor(' p~rovil•g this. e't it' (estal)ish Itlie ,'xisfti(e,(' of

Ite(. solilt loll for scale iII I Ills sp)cial (ase of b-' - a 0. LooJ)kig il at I&1piatioli 2.21.

- = 0 ) - (0 -. 30)

i.s a soltilio t lthe iquiadratic since a > oI anid( b > 0.

IVsiig I'jluiatiion 2.22. it anit be showni that ac - a exact vl wiell c' - ±1., or

S - -±c + a a ndj1- (s=- App)enidix 13.3). roli this resilt and El lalI os 21
atl(] 2.20.

=s do/7 I do-,• id,>o•,.l=/(• ./,, (2.31f __ IdR /(/02 sillI _. _ U01 UO 0

h, I = J' 1 0- 1 =, J -'"02) ,7 =

Thils 42 - ac 0 old \v if t he ni1odhl triangle is paralhel to ie iti(mage plaine. (Coniversel v. if
the ulliodh rialigle is parallel lo the ilmiage plane. it nlilsi be ihat ('- = '. hiurther. III IInIs
case li = h-2 = 0. so that s• 1,- = • which inllplies that 2 - , = 0.

Si i ce t Ih vwo sol Ill olils are ht le sa Ilie. wc kiIow it .11 a . Not ice in Fig. 2-1 lefi
and Fig. 2-1 that the geon)llettic ilit elpret atioills for tihle two SOh iiiiolis for scahle ('ollalw to
tie(" same soluition whenit h = /12 = ilH = 12 = 0 all(l .N -- , aI t'eSu. ,'[ill ihere is
one soluit'ic'" for scale. t here is also oi(ie solution for (hI . .2) and (/i- /12 ). aliheil (0.0).

2.5.2 Model triangle is perpendicular to the image plane

Th'e sitiuat ion where the nlodel triangle is l)erpenli(lar Ia to lie ilmiage pllane is of iint('rejlst

51 ihce tle projectiili is a iline. Note. however, tihat thle soltitoli given earlier miiakes 11i0

ex(',eptiion for this ease as long as the n1o(h(l t riangle is not (hegennerat e. As for \vial
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do_

Figure 2-6: Special casae where model triangle is a Iline. The repeated lalels corresoind

to two differernt sollitions for the posit ion of the m01odel that leave .-S 11 I)rojectt )iig nto it .
For 1)oth solutions .,m., projects onto the same image point.

hapl)pens iII tihis case. since the image tr iangle is a line. we know u' = 0 or u . C
0 > Equation 2.21 bec'omes

(I (I

Flrolmi Set oiol 2. 1. of the two solutions for scale. t he true one is , and t he i-vertel oie

is 0.

To see why tihe inverted solution is zero. recall that the solution cant be viewed as
scaling an project ing the image triangle onto the model triangle. using for scale r .

which iII this case does not exist. Since the image triangle is a line. gralihicallv this
amounts to trying to scale a line so that it can project as a triangle, which is not 1)ossible.

2.5.3 Model triangle is a line

This is the one case where the solution for the scale fails. and it fails b'ecause a. which i;
a measure of the area of the model triangle, is zero. l)espite this fact, we can determine

when a solution exists. First, we know that tile image triangle must be a line as well. To
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scc i It hisl. cond~ition Is eiollwig. conisider look)iwL foi it 31) r 1)I atI ](io aiid (-itc I IIal IlIeave-'

.4), ! liOLrp I -,dlly p)r•,o 't ill it 1 11t it lit i t). 2-(6. ()l,.,vr , thatl l \i V -.uch ,ot t rot 11

an sidel5(14 l('i\(5 S11 p ro 'J((tII It2~out 0 th li'sallwpit I 111 c iii lie ii iic. IlIII, lwiitwiu t hat for at

.oliioll to, exist. it Must Ic that -u-'- -w-- l wviiiil Ie iIiage trnaii•h- Ic a li nt', this

iii OC iiTial I i ,.not I li'i . \\'i'Ill it is I Ile. I hre Is ai iiu iiit of Il li o,, ,Co , sp•tl , ili(II t ,

t ,v\,rv s5(ilel .lot at., lol t hat Iea'ves S111 i I)lrti,'ti i,-it oi I, .

.\ not lher waY t o look at I his sit tuit loll I,. It hot iWe Ithai Ih lic I thel I rialigle heligiti a li1te
wlit'ti usinig I lit( I tule Sohol oll is alialogtlils t o I lit Iiilage tI liauiich ('vllg hut )I( whei lisilui

chI I i vu I. t (l so it ioI. lFroi i S t -cI Ilo _ 2-7). " li, . stal f ott , 1,01 1t I, i IIe I rlt,, soIlIlt 1oll (1 4''

lII(A. sIst I Ii l ess I = 0). wv iI'lI i1, ) porits I Iat t I this c'as. I It' cscaltc ft iattoi (ho•es I .t ('',x1isI

mllless c = -.

2.6 Stability

This sect'ion points 5out two situtations to, he careful of whien usiiing thlie pose soluilion.

l'h'e first is whli the li•ed(hl po)ints ae(, niearlv colliliear. ,ecauase the solliltlto is mIlCar ai
singulart Iy ( Sec(tioni 2.5.3).

Thl" seCiOil sit ulatlion is whll tei tlle iodel trialigle is parallel to tle image planie. Siuice

the pos" soltion is tilliqie for aliv lpair of nmodlel and iliiage tiianrgles. for >a'h of' hli'

tiree intiage ploinits lher'e is alwaYs sOmlet' (lire(tciolll Iii whi(ch 1t call iove such t hat its

(orrlesf)on(dilI<Ig 1)1io(1(v 1 l olit I i idergoes 31) rol at ioi \vwiit Iit scalev (see 1:[1,g. 2-7 left ). Iii

geiieral, wlheni d iio(lel poilit is rot)ating iii space aroliuini a lite i tlie iliage planie. a

IiiOVeuileiit I) V its corresp)Oldiling itmage p)oint Ib all aliiloilit Ax cmases itlie altitulde ft ltie

m1od0el poitit to (clialge bY all aulntlit A/i (see Fig. 2-7 right ). a('(Or'iting to

.X- + /1 = ..- _A.,) 2 + (/I + A/), (2.33)

LXpandilinig gives Ahl + 2hA, - 2..rAx + Ar 2 = \I. whi (-,, we (-all solve for Al:

A I -h - V1 + 2.rr - A. 2  (2.31)

Vhleni Ax is smnall and h = 0. we have Ahl = ± .rA Thuis. (ll)'ep (lindig oil 2. it

stniall chiai•ge il x could lead to a large chatige in h. which ltav c-aul,,e in.stabialifti". Note
lhat tiiis instabialitv is iiiiherent lii itle problem. alin1 so (care" should be lakemi when using

any solut ion for :11) I)poe.
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h+Ah

i 2 ,S m2

h
x

o, • Ax*

Figure 2-7: Unstal)le situation. Left: Looking straight down at the image. If I moves
along the perpendicular to the line between t0 and i1 while the other points remain fixed.
then S?12 will rotate in space around that line to follow 72. Right: Looking from the side.
One of the model points is rotating in space around a line in the image plan(e.

2.7 Derivation of Direct Alignment

To compute the position in the image of a fourth model point. I first use the weak-
perspective pose solution to compute its 3D position in camera-centered coordinates. I
then project the camera-centered model point under weak-perspective and obtain the
image position without having to calculate a model-to-image transformation. Let the
inmage points be to = (.r0 yo). 1 j = (.rj,.q1 ). and 12 = (,' 2 ,.Y2). Given .s. h1 . 112. we can
invert the projection to get the three model points:

1 1 1
t•0 = -(a 0 . Yo. w) -7l = - (y. 1. ItI + zc) 712 = -(.0 2.- Y2. h 2 + w). (2.35)

%%here it is an unknown offset in a direction normal to the image plane.

Given three noncollinear 2D points. q. q•, and q., a fourth 2D point 4 can be
uniquely represented by its affine coordinates [Graustein30]. (a. 3). which are given by
the equation 4j = o(qj - ýo) + 3(42 - q4) + jF. Given three noncollinear "3D points. p70 .
1;1. and m2, we can uniquely represent any other 3D point ti in terms of what I shall call
its "extended affine coordinates.- (n, rJ, - ):

Let = (1(a .- A*e) + e!te ( le(I -atin ) + coordi -ne ) o ( fot -Ko) + i i (2.36)

Let (n, 34. 7) le the extended aiffine (-(ordinates of the fourth niodel point in terms of
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the matched three, which I assume are noncollinear. Let .o0 = xa - Xo. yo1 = Y1 - Yo,
0to2 = X2 -xr, and Y02 = y2 - yo. Then. using the three calnera-centered model points

such that P ri = to, P11 = j.l, and P72 ='i2,

1; - = (.r,0 1 , 01 - 1)) (2.37)

1
P2 - AU -(£02, Y02- h2 ) (2.38)

(Ai - ;0) x (1A -A) = -2yo(01 1 2 - Y02/h1.2h0211 - Xo01 1.'o01 yo02 - o02.Y0,) ( 2.39)

Next, substitute Equations 2.37-2.39 into Equation 2.36 to get the 3D location of the
fourth point:

1 1
'713 -n(axoIyoI~hI) + -3(a'o2, Y2, ha)

+±.-2 (yol h2 - yo02h. -01oih2 + .roah1. .01Yo2 - .'02Y0l ) + -(X'0, Y0. Y-)

1 yo01h -y2
-(Oo1*0 + 3a'02 + 0 +x ±r0.

OY~lLI112+~)--,ro1 h2 ± .r02/lh+! 0

oh, + 3h•2 + "7+ w) (2.40)

Let II represent, an orthogonal iprojection along the ý: axis. To project, multiply by the

scale factor s, and drop the z coordinate:

H(shl*3) = (OX0O + 3102 + ý (y.oH 2 - yo2Hl) + ,0.

c'yoi + 11yo12 + "'(-xo0 H 2 + .r02H1 ) + Yo) (2.41)

Notice that the unknown offset. it has dropped out.. This expression computes the image
position of j;3 from its extended affine coordinates, from the image points. and from Hi
and H2, the altitudes in the weak-perspective geometry. It should be kept in mind that
the altitudes H1 and H2 depend on the specific imaging geometry; that is, they depend
on the pose of the model.

Equation 2.35 gives the three matched model points in camara-centered coordinates
without having to compute a. rigid 3D transformation. This should reduce the cost of
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com0putitI ng thie caniera-centered locations of th iese points, which will spee(l-uIp recogni ion
systenis to the extent this CoMputation is important. Further advantages of the direct

method are that it is more intuitiv'e because it is more directtlv connecte(d to the geoometrv.

and it niay be simpler to use.

It may b)e worthwhile to observe that Equation 2.11. the expression for the fourthl
point, can be rewritten as a weighted sum of the three image points:

1(,SIr)3) = (n~rol + 31'0 2 + ^I (yotH2 - Y0 2 HI) + xo,

OYO1 + 4q02 + "i(-XO1112 + Xo02H1 ) + yo)

= (orx +± H 2 y1 ,oYI - IjH2_r) - (oxo + ýIt 2yo. oyo - -1I2.10) +

(3-1. 2 - - IIIY2 31 Y-2 + H i1,2 ) - (L2 o - 1I III Yo, 3 yo + 2' H1Io ) +

(.r0 , Yo)

-- )(HI - H2) 1- - Y J [ Jo
0- ^1 H2 r, +q " 1 , 1,2y

Let R9 represent a 2D rotation matrix that rotates by an angle 0. Then

H (•Sn 3 ) =oRoo1: + IRol il + 6 2R 2 12, (2.42)

where

= 0 - 3)2 + (,((It - H.2))2 (2.43)

hl = Vl.2 + (hH 2 )2  (2.44)

62 = V732 + ('Ha)2 (2.45)

cos00 = I-o-,l sin O = __-(H,-"2)

cos 01 = , sin 0, = (2.46)

cos0 2 = sill 02 =W

Thus. we can view the computation as a 2D rotation and scale of each image point
separately followed by a sum of the three. It is important to keep in mind. however, that
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tile rotations and scales themselves depend on the image points, because of H, and H2.

When the model is planar, tile form of Equation 2.12 facilitates understanding the
effects of error in the image points. Error in the locations of tile matched image points
leads to uncertainty in the image location of the fourth model point. Suppose that tile
true locations of the matched image points are known to be within a few, say (,, pixels
of their nominal locations, for i = 0, 1. 2. Let i, and ýi be the true and nominal locations
of an image point, for i = 0, 1,2. Then, for some , io = 6o + go. where " u.o and
similarly for 11 and 12. Then

H(.in73 ) = o0R80 io + 6lRolIi + 62R 0 2 i2

= (boRo0co + 6lR 0 ( + 6 2R 02 J) + (boR0o + R01& ± `52R+62)

When the fourth point is in the plane of the first three. " = 0, so that the scales. 0o. 6 1, and
6 2, and 2D rotations, Ro0 , Rol , and R 02 , are all constant (see Equations 2.43-2.46). This
means that the first term in parentheses is just the nominal image location of the fourth
model point. Since io, C-j, and i- move around circles, the 2D rotations in the second
term can be ignored. Further, since these error vectors move independently around their
error circles, their radii simply sum together. Therefore, the region of possible locations
of the fourth model point is bounded by a circle of radius bO0o+61C +62(2 that is centered
at the nominal point. By plugging ý = 0 into Equations 2.43-2.45. we get that

60 = 11 - Ck - 131, , 6 = 101 , ,52 = IA ,

Assuming (o = (I= (2 = c. this implies that the uncertainty in the image location of
a fourth point is bounded by a circle with radius (11 - a - + 1 + ji + 13 1),E and with its
center at the nominal point, which repeats the result given earlier by Jacobs [Jacobs9l].

Although the non-planar case clearly is more complicated, since the scales and 2D
rotations are no longer constant, Equation 2.42 may prove useful for obtaining bounds
on the effects of error in this situation as well.

2.8 Review of Previous Solutions

There have been several earlier solutions to the weak-perspective three-point problem.
notably by Kanade and Kender [Kanade83], Cyganski and Orr [CyganskiS•] [Cygan-

ski88], Ullman [Ullman%6] [Huttenlocher87], Huttenlocher and Ullman [HuttenlocherSS]
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[11t1 Itel nlocherl90] [1 llmanS91, and ;rimson. 1lutitenlocher, and Alter [(rimson92a]. All
the previous solutions comp)ute the :31) pose Iy going through a 31) rigid transformat ion
0r a 21) afline transformation relating the model to the image. A 21) affine transform is
a linear translform plus a translation, and it can be applied to any object lying in tie
plane. All but UTllman's anid (;rillson. If ltt telllocher. and Alter's solutions comlpute an
alline transformation between the three model and image points. Also. all 1)u1 Kanade
and Kender's solution compute a model-to-image rigid transformation. e(iher via a rota-
tlon matrix or via Euler angles.

Not all of the solutions directlv solve the weak-perspective three-point problem. The
earliest solution, which was given by Kanade and Kender in 1983. applies Kanade's
skewed-symmetry constraint to recover the 31) orientation of a syimmetric. planar pat-
tern [Kanade83]. More precisely, Kanade and Kender showed how to comlpute the :11)
orientation of the p)lane containing a symmetric. p)lanar pattern froni a 21) affine trans-
form between an image of the pattern and the p)attern itself. To apply this result to
the weak-perspective three-point problem, the three points can be used to construct a
symnimetric, planar pattern, and a 2D affine transform can be computed from two sets of
three corresponding points. The solution was shown to exist and to give two solutions
related by a reflective ambiguity, assuming that the determinant of the afline transform
is positive.

The remaining methods all concentrate on computing the 3D rigid transform from I he
model to the image. In 1985, while presenting a system for recognizing planar objects,
(vganksi and Orr showed how to use higher-order moments to compute a 2D affine trans-
form between planar regions [(Cyganski85] [CyganskiOrrS8]. Given the affine transform.
they listed expressions for computing the 3D Euler angles from the 2D affine transform 1 .
They did not, however, discuss how they derived the expressions.

The next method is the solution given bY IT1llman in 1986 [IllmanS6], which appeared
again in [Huttenlocher87]. The paper included a proof that the solution for the scale
factor is unique and the sol ition for the rotation matrix is unique up to an inherent two-
way ambiguity. (This corresponds to the ambiguity in H, and H2.) Yet Ullian did not
show the solution exists. When it does exist. tTlhnan described a method for obtaining
the rotation matrix and scale factor.

In 1988. Huttenlocher and ITIlman gave another solution, and. in the process. gave

iThe expressions that appear in [Cyganski85] contain typesetting errors, but, are listed correctly

in [Cyganski88j.
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the first complete proof that the solution both exists and is unique (up to the two-way

ambiguity) [tluttenlocherS8] [(Hutitenlochler90] [I Tllinan89]. Like Kanade and Kender. and(
('yganski and Orr. tluttenlocher and I lmnan's solution relies on a 21) aftine transform.
The solution itself is based on algebraic constraints derived from rigidity, which are used
to recover the elements of the scaled rotation matrix.

The last solution, which was published this year. was developed by (rinison. liut-
tenlocher, and Alter for the purpose of analyzing the effects of image noise on error in
transformation space [Grimson92a]. Towards this end. the method facilitates computing
how a small perturbation in each transformation parameter propagates to uncertainty
ranges in the other parameters.

2.9 Presentation of Three Previous Solutions

The solutions discussed in the previous section differ significantly in how they compute
the transformation, and, as a, result, each one can provide different insights into solving
related problems, such as error analysis in alignment-based recognition and pose cluster-
ing. It seems useful, then, to present the previous solutions in detail, so they convenient Iy
can be referred to and compared.

The first method presented is ITllman's solution, which the first part of this chapter
extended. After that, I give Huttenlocher and Ullman's solution. Lastly. I present the
method of Grimson, Htuttenlocher, and Alter. I do not present Kanade and Kenidefrs
method nor Cyganski and Orr's. because Kanade and Kender did not directly solve
the weak-perspective three-point problem, and Cyganski and Orr did not detail their
solution.

It should be pointed out. that the presentations here differ somewhat from the ones
given by the original authors, but the ideas are the same. Basically, the presentations
emphasize the steps that recover the 3D pose while being complete and concise.

In the following presentations, we are looking for a rigid transform plus scale that
aligns the model points to the image points. In all methods, we are free to move rigidly
the three image points or the three model points wherever we wish, since this amounts
to tacking on an additional transform before or after the aligning one. For example. this
justifies the assumption made below that the plane of the model points is parallel to the
image plane.



14' CHAPTER 2. 3D POSE FROM 3 POINTS U'SING IVEAK-PER.SPE('TIVE

For consistency, the same notation as in Sections 2.2 and 2.4 is used in tile proofs
that follow: Let the model points l)e 1%. 1in1 . 1;2 and the image points be I. ,j. with

the respe, ti ,c distaiict'., betwe, the po;-:its bcilzig H,.,. RI_. and q for the model points.
and d10. (102. and d 12 for the image points.

2.9.1 Overview

Initially, all three methods compute a transformation that brings the model into image
coordinates, such that the plane of the three matched model points is parallel to t lie image

plane and such that I% projects onto io. which has been translated to the origin. The
three methods then compute the out-of-plane rotation and scale that align the matched
model and image points. In so doing. the methods all end up solving a biquadratic
equat ion.

In1 lllman's method. the model and image points are further transformed via rotations
around the z axis to align tii¾ and il along the x axis. Then the 3D rotation matrix for
rotating successively around the x and y axes is expressed in terms of Euler angles.
This leads to a series of three equations in three unknowns. which are solved to get a
biquadratic in the scale factor. To get the elements of the rotation matrix, the solution
for scale factor is substituted back into the original three equations.

Instead of further rotating the model and image points. Huttenlocher and Ullman
compute an affine transform between them. which immediately gives the top-left sub-
matrix of the scaled rotation matrix. Then by studying what happens to two equal-
length vectors in the plane. a biquadratic is obtained. The scale factor and the remaining
elements of the scaled rotation matrix are found using the algebraic constraints on the
columns of a scaled rotation matrix.

Like UlIman did. Grimson. Huttenlocher, and Alter rotate the model further to align
r7? and i1 . The desired out-of-plane rotation is expressed in terms of two angles that
give the rotation about two perpendicular axes in the plane. Next. Rodrigues' formula.
which computes the 3D rotation of a point about some axis, is used to eliminate the scale
factor and obtain two constraints on the two rotation angles. The two constraints are
solved to get, a biquadratic in the cosine of one of the angles. Its solution is substituted
back to get the other angle and the scale factor. which can be used directly by Rodrigues'
formula to transform any other model point.

As mentioned in the introduction. Ulhman's solution is incomplete because it does
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not show which of the two solutions for the scale factor is ('orrect: actually. the solution

is coml)let ('1 )\v the result given in Section 2.1.1 of this chapter. Similar to Ullmnan's

method. Grimson. Iluttenlocher, and Alter's solution has the saiuie drawback of not

showing which solution to its ~iquadratic is correct. lluttenlocher and I7llnian. on tlhe

ot her hand. have no such problem because it turns ouit that onie of the Iwt) soltit olls to

their l)i(yladratic is ol),ionsly not real. and so it immediately is discarded.

2.9.2 Ullman's method

This section gives Ullman's solution to the weak-iperspective three-point problem. Thne

main idea is first to transform the three model points to the image plane and then solve

for the sc'ale and out-of-plaule rotation that align the transformed points.

Specifically, the model 1)oints first are rigidly transformed to put the three niodel

points in the image plane with itXm at the origin of the image coordinate s \ste(ll and
?71 - trio aligned with the x' axis, After rigidly transforming tihe niodel points, the
resulting points can be represented by (0.0.0). (,r1 .0,0). and (.' 2,. Y2, 0). Similarly, let

the image points 1)e rigid transformed to put it at the origin and i1 - io along the x axis.
and let tihe resulting image points be (0,0,0), (.i'1.0.0). and (0'24 y2.0).

Next, we break the out-of-plane rotation into a rotation around the .r axis bY an

angle 0 followed by a rotation around the y axis by anl angle 6. as pictured in Fig. 2-8.

The corresponding rotation matrix is

Scoso 0 sill [1 0 0 1
R 0 1 0 0 cos0 -sino

- sill 0 cos o 0 sill 0 cos 0

Cos 0 sin~sinO sinocos#
- 0 Cos 0 - sin 0 (2.47)

-sin 0 cososino cosocosO

After rotation and scale, (0.0,0). (.'1,0 .0). and (."2, .q2 , 0) becomle (0-0.0), (.ri,0, z1 ). and

(.r.2,.Y2, z2 ), respectively, where zi and z2 are unknown. Titus, we need to find 0. o. and
.• such that

.sR(xi.0.0) = (,l,.0.zl)

.sR(.r2 .q2,0) = (x 2 ,Y 2 ,z 2 )
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sx

6 Y2

X.

Figure 2-8: Interpreting the out-of-plane rotation angles in [Uhnan's method.

Expanding the first two rows of R yields three equations in three unknowns:

s,' coso = X.I (2.48)

-'4 2 cosO 2= Y2 (2.49)
•2 Ccos O - y,2 sin osin 0 = X.2 (2.50)

Fig. 2-8 gives a graphical interpretation of the first two equations. Substituting Equa-
tions 2.48 and 2.49 along with expressions for sin o and sin# into Equation 2.50 yields a
biquadratic in the scale factor s:

as4 - b, + c = 0. (2.51)

where

a = y,2y#2 (2.52)

b = x) + - 2 + V2+ y)) - 2xa1'X 2 , ,X1 2  (2.53)
2 2

1 = 2 (2.54)

The positive solutions for s are given by

Cb±: vb'2 - 4ae

= ± a (2.55)

In general there can be one. two, or no solutions for s. Ullnan makes no further attempt
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to deter mi Ie when or if each solution arises. except to refer to a uniqueness proof he gives
ea'lier iII the i)aper. Thfe trli(lueness proof implies I here can be at mlost one solution for
.I, but does not say which solution it is or whether it can be either one at different times.

("I",' .,, tLc :'otatio:, ,,,:at,;, R ;- fi1t•(6,P(I I l;1,W COS 0 - - and cost)0 = in Equa-
1ion 2 47. One difficultv with this is that we do not know the signs of sin 1) and sin o: this
leaves four possihilities for the pair (sin 0.sin o). In his uniqueness proof'. I'lhan points
out that tile inherent reflective ambiguity corresponds to multiplying siuniltaneously ltie
ellelelIts r1-3 , 1'23 , :*1 , and 1'3• of R !y -1. fi Equation 2.17, the signs of those elements
also are inverted when bot Ih sin 0 and sill 0 dre mult iplietld bY - 1. which. visually. corre-

sponids to reflecting the model points about the image plane (Fig. 2-8). Still, we have no
wayv to know which of the two l)airs of solutions is correct. One way to proceed is to try
both and see which solution pair aligns the points.

2.9.3 Huttenlocher and Ullman's method

First, assume the plane containing the model points is parallel to the image p)lane. Then
subtract out ,ifo and 1o from the model and image points, respectively, to align them
at the origin. Let the resulting model points be (0. 0, 0), (xi.yI, 0), and (, 2, .ý,2. 0). and
the resulting image points lie (0,0), (,.r ,yl), and (1.2, Y2). At this point, what is left is
to compute the scaled rotation matrix that brings (,r-, y., 0) and (.-P2, p2, 0) to (0-1 Y1, :1)
and (x2, ,2, : -2), respectively, where s1 and -:2 are unknown. That is. we need

.•Rrl.•l0)= (' 1,y.z 1 )

.sR(x,2 , 2.0) = (2.r 2. ,z 2 ).

Letting li = srll, 112 = S12, etc., and focusing on the first two rows of the rotation
matrix, we get two sets of equations:

Ix, + k1# 1 = xi (2.56)

III f12 + 112Y2 = X2 (2.57)

121T-l + 122,Y• = 111 (2.58)

121X2 + 122112 = Y2, (2.59)
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C2

Figure 2-9: Projecting two otlthogonal same-length vectors il t ltetlocher d
I(litan1s method.

which give 121 112 the top)left sub-matrix of the scaled rotation matrix. Note thatwhich gie 21 122 toplef

this step fails if the (leterninent. ,ry2 - .r!I. equals zero.

Next. we make , digression to consider what happens to Iwo or thogonal, equal lengt h
vectors in the plane. (-I and t2. Since (I and are in the plane. we can apply 1he
sub)-matrix just coomputed to obtain the resulting vectors. (-j and 2"':

,/122 - (2 = I[ : ( (2.60)t~~~ '1 =1|/2/1 l22

When a model is transformed. (j- and -(2 undergo a rigid transformation plus scale before
projection. As shown in Fig. 2-9. after t ransformat lon t hese vectors become (-' + c1 z anld

2' + c23. Since a scaled. rigid transform preserves angles and ratios of lengths between
vectors, and since t 7 = 0 al(l H -11=11 -I. it must be that

(-' + (.1) (i' ± + 2:) = 0

I -1' 11 + C 2 1 -'I + C 2 .

These two equations simplify to

CI C 2 = K'
2 2 k 2
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where

1 = - "(2.61)

/'2 = (7 - -2 - (2.+62)
Substituting for c 2  i• the second equation leads to a biquadratic in C1 :

CI

C4 4'2c2 0 (2.63:)

The general solution is

cI 4.2 ± k2±42)

C(onvenientlv. the inner (liscriminant alway's is greater than or equal to zero. Furthermore.
since 44k' > 0. the real solutions are given by

(k2 + V2-+U-242(2.64)

since otherwise the outer discriminant is less than zero.

These two solutions for c, give two corresponding solutions for c2. which from Fig. 2-9
can be seen to correspond to a reflection about the image plane.

The solution for c2 does not work when cl 0. In this case.

C2 4± ' 1' - 2' 1'I. (2.65)

This gives two solutions for c2. if it exists, which can be seen as follows. Since c, = 0.
i-i ends up in the plane. so that that the length of Cj is just scaled down by ,. whereas
the length of i- reduces both by being scaled down and by projection. ('onsequently.
II 1 -511 ý'I-' 11, and, therefore, c2 exists.

Given cl and c2, we can recover two more elements of the scaled rotation matrix.
Since r, and r-2 are in the plane, we know that sRW1 = i-' + c1 ' and sWR2 = (-7' + c22.
Focusing on the last row of the scaled rotation matrix, we get, the two equations 31 = C,

and 132 = C2 .

At this point, we have the first two columns of sR. and, from the constraints on the
columns of a rotation matrix, we can get the last, column from tie cross product of the
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first two. In total. this gives

112 ~(C2/2i - (i'122)1

.SR = 121 1,,_ 7(i/22 - 12/111) J2.66)CI1 ,2 - 112 12 1

Since the coltiimns of a rotation matrix have unit length. we know

Notice that the ambiguity ii c1 and c2 inverts the signs of the appropriate elements of'
the rotation matrix as discussed in Section 2.9.2.

2.9.4 Grimson, Huttenlocher, and Alter's method

(rlinison et al. gave another solution to the weak-lperspective three point problem in
order to get a handle on how small perturbations affect the individual transforination
parameters.

To start. assume the plane containing the model points is parallel to t he image plane.
Next., rigidly transform the model points so that i-0o projects to i0 and r1;1 - 1;10 projects
along i1 - i0 . Let Hl represent an orthogonal projection along the z axis, and in general
let ij-± be the 2D vector rotated ninety degrees clockwise from the 21) vector iv. Then the
translation is to - Hfi),). and the rotation is about z by an angle c" given by

Cos U' = o 01 • 101, Sill U' = -1-101 101.

(see Fig. 2-10).

At this point, assign iii0 = 7ý1- 110, 1in0 2 = 111 2 - 101 = ilI - t0. alid 1o2 = 1712 - i1'0.

Also, consider the out-of-plane rotation t.o b)e a, rotation about i01 by some angle 0 followed
tv a rotation about i0:l by some angle o. Let us compute where the vectors t01 and 1'L

0 1 1 
0 1

project, to after the two rotations and scale. To do this, we use Rodrigues' formula: Let
R-,# represent a, rotation of a point if about a direction i by an angle r. Rodrigues'
formula is

R.,17FT = cos rFp+ (1 - cos r)(ý.- i-)t + sin r(i x f-). (2.68)
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Figure 2-10: After the rotation by c' in Grimson. Huttenlocher. and Alter's

method. the plane of the model points is parallel to the image plane, 1,%0 projects

onto t,. and rn I- ,r projec L., along I- II.

I'sing the formula, we call com ptute

R,,I R-'o 1 101 - COS 0101 - Sill 0 (2.69)

RoI± .R-0ol = sill = sinsinl 01 + COS 010, + sin 0 cos oZ.

Initially. 7ifol was rotated about , to align it with 101. In order for the scaled orthographic

projection of tiiol to align with to,. Equation 2.69 implies that

II 1 o sI o

(10 (2.70)
ol cos o"

Then

d01o
sHIR , .o R- (2.71)

H�R-°1 * =d 01  I
4ia R, (sin 9 si n o' + cos 0[ 1 ) (2.72)
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Next, we use the expressions in Equations 2.71 and "2.72 to constrain 0 and o such
that 1o102 p)roj(cts along i02. \'When we aligned i-no anld i0. 1),n rotated to Rc.,Tho2 Since
1;i0 . has no Z component (by assumption), we call represent RbYno 2 tw

R102 COS •io 1 + 1102 sin

where ý is a known angle. Consequently. the transformed. projected. all(l scaled ýi7 0 2.
which must equal 1o2. is

=IR-, R-o (R1•02cos +io.l0+ R o2sini,) I

=f02 cos<(sflR-± R-i 1  + 110.2sin 'R-j.1R01 I-L~~

(1,01o.c -.dooI:

12 COS Rol. + R0 2 Si1 (Rol (sin 9 sino•01  cos OS ))

do, R0 2  9i 1 +do, Ro2  co )- 1d (cos~coso+sin~sinosinO)1m+ d (sinlCOS •.•
cos o Ro cos o Ro

Similar to R-z•.iioý. we can represent 102 as

02 =o(102 cos ,-'01 + d0 2 sin '+'±

where ,: is known. BV equating terms we get

0(cos •cos o + sin sin osin 9) cosocos.'; (2.73)
d02 Ro0

doino sO) cososinB. (2.74)
do,2 7o I

TIhese two equations can be solved to get a biiquadlrat ic in cos o:

sin 2 wcos 4 o _ (/2 + 2 - 2/cos,,cos)f cos2 0 + / 2 sii 2 r 0. (2.75)

wlhere

- 1d02" (101(2.76)
110l d02

Since R:,,i701 is aligned witli loi. we need cos o to b)e positive so that iiiol project's in
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the same direction as 10j. The positive solutions are given by

cos° = -- , , i ,2 12 sin2  .sin 2  (2.77)

with

1 (1 + 2 C -21cos,,;co).

This equation gives uI) to two solutions, but Grimson et al. make no further attempt to

show which solutions exists when. except to say the equation gives real solutions only if

V > 0 or

CO <1±iOS (2.78)
2t

Given o, Equations 2.73 and 2.74 provide 0:

(oS 0 = Sin ýý cos o (2.79)
/ s ill

cos 0(cos - tcos (2.80)
1 sin l sin o

Given any model point 7.. we can use the computed angles along with Rodrigues'

formula to find its image location. In particular, once 171( and io have been subtracted
out, only the scale and 3D rotation are left. The scale is given by Equation 2.70. and. as
shown above, the rotation is

R1,,Ro01 ,R;,. (2.81)

As with ITllman's method (Section 2.9.2). we (to not know the signs of sin 0 and sin o. but
only that inverting both signs simultaneously corresponds to the reflective ambiguity.

2.9.5 Summary of the three computations

Ilere I summarize how each method can be used to compute 3D pose from three corre-
sponding points. To begin, transform the model and image points so that (1) the model
points lie in the image plane, (2) 7io and i'0 are at the origin of the image coordinate
system, and( (3) •il - 7rio and 7i - 1-' lie along the x axis. Then use one of the three
methods to compute the scale factor and out-of-plane rotation, as follows:
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U Iillman's method

1. IUse Equations 2.52-2.54 to get a. b), and c.

2. Substitute a, b, and c into Equation 2.55 to get

.1. Calculate cos o = " and cos0 = .

4. ('alcuilate sill 0 = i1 - cos2 o0 and sin 0 = v1I - cos2 0.

5. (Construct the rotation matrix R using Equation 2.47.

* H uttenlocher and lrlman's metho0(

1. Solve Equations 2.56 and 2.57 for 11, and 112, and Equations 2.58 and 2.59 for
12 and 122.

"2. Let (-I = (0, 1) and (• = (1.0). (Any orthogonal, equal-length vectors can be
used.)

:1. Use Equation 2.60 to get &-j' and .2'-

4. Substitute (j' and &' into Equations 2.61 and 2.62 to get ki and k2.

5. SubstituteC k1 and 4.2 into Equation 2.6-1 to get cl.

6. If cl : 0. calculate c2 - Otherwise get c2 from Equation 2.65.H

7. IUse Equation 2.67 t~o get

8. IUse Equation 2.66 to get. sR. Divide through by , if R is desired instead of
.sR.

* (rinison. liuttenlocher, and Alter's method

1. From the model points. (o0111pute RIl, R02 and ý. and. from tihe image l)oiits.
C0"nlPul, e 401-.(10-2- and 'I:

"2. ITse Equation 2.76 to get I.

3. U se Equation 2.77 to get cos o.

4. Use Equation 2.70 to get.

5. Calculate sin c = v/I - cos2 o.

6. U1se Equations 2.79 and 2.80 to get cos 0 and sin 0.

7. To transform any point rp. substitute cos o. sill 6. cos 0, sin 0, and i7 into Ro-
drigues' formula, Equation 2.68. to get. Ri7 = R-,,6R0.07 .
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2.10 Conclusion

The weak-l)erspective three-point prob~lem is fundamnental to maniy approaches to model-
based recogniition. In this chapter, I illustrated the underlying geometry. and lhen used
it to derive a new solution to the problem. and to explain the various special cases that
can arise: the special cases determine when there are zero. one, and two solutious. Also.
I discussed earlier solutions to the pjrob)lem in detail.

The new solution il based on the distances between the matchedl niodel and image
points, and is used to obtain an expression for a direct alignment of[a uiodel to an inmage.
As a result, the sohlution given here may be easier to use, and, for recogniti," svsteiiis
that repeat the coniputation of the mo(lel lpose miany limles. nmay be niore eff ient.

Furthermore, the geometric approach in this chapter providles additional insights into
the lprolblem. First, it was demnonstratled that the pose solution may be unstable either
when the model points are nearly coilinear or when the plane of the matched model
point~s is parallel to the image lplane. This property is not particular to the pose solltion
given here, but is inherent in the underlying geometry. Second. this chalpter resolves
which sohltion to ITllnan's original biquadratic is correct. and. specifically, showed that
the false solution corresl)onds geometrically to invert ing the roles of the model anil Image
p)oints. Also. this chapter makes evident the symmetry of the sollition with respect to
the ordering of the points. In general. tlie geometric approach has been useful ini gaining

understanidinig of the basic probleni, anti may prove useful for providinig insights x\'lien a
related lprob~leni needs to be solved.
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Chapter 3

Uncertainty in Point Features

As discussed in Chapter 1. features derived from an image invariably contain errors. The
approach in Section 1.3 uses triples of matched point features to generate hypotheses, and
then uses model features such as points, line segments, and curve segments for deciding
which hypotheses are correct. To decide correctness, the algorithm uses the matched
point triples to predict the image locations of the model features (step 21)). Errors in
the locations of the image points, however, lead to uncertainty in the predi :ted locations
of these model features. Consequently, in step 2c of the algorithm, the hypothesized
three-point, matlch is used to coml)ute search regions for finding matches t.o the model
features.

In the past. to account for the uncertainty. people tried considering all image featUtires
as candidate matches (Grimson84]: however. the c'ombinatorics of such an approach are
prohibitive [(rimson90a]. In addition, people tried looking for matches in a region of
fixed size and shape about each predicted feature [HuttenlocherSS], but this assumes the
size and shape (1o not significantly change. If this assumption is wrong, it can lead to
correct hypotheses being discarded and incorrect hypotheses being accepted: occurrences
of which are known a.s fals( ngalivs and falsc posilivs, respectively.

Using a standard model for error in the image point~s (Section 3.1). this chapter shows
that the shapes of the uncertainty regions for point features generally do not change.
but the sizes can change considerably. Further, it. is demonstrated that the uncertainly
regions generally are circular (Section 3.2), and a method is given for fitting 'uncertainty
circles" to them (Section 3.4). In addition, the situations where the uncertainty regions
are not, circular are described (Section 3.3). Lastly. the uncertainty circles are compared

;) I
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to previous unicertainty propagatioin techniques (Section 3.5).

3.1 Bounded Error Model

The errors in the image points arise from several sources, including the optics used to
obtain the image, the edge detector, and the process for finding distinguishing points
from edges. The effect of these errors is to alter the locations of the image points. These
locations will be altered by at most some amount (. which empirically seenis to be about
five pixels. (ircles of radius ( can then be used to bound the error in the sensed or
nominal locations of the image points. This approach to modelling error is known as
a "bounded error model," and has been used often for performing robust recognition
[GrinmsonS4] [BairdSS] [Ellis87] [Cass9O] [Jacobs91].

3.2 Uncertainty Circles for Bounding Uncertainty
Regions

To see how well uncertainty circles do for bounding the errors in the image locations of
predicted model points. this section runs two experiments that compare the true regions
to the circular fits. The radii of the circles is computed by taking the maximum distance
from the nominal point to a. point oni the boundary. To compare the regions, we iieed
a measure of error between the true region and the approximation. When the circular
a pproximat ions are poor. the circles will badly over-bound the true regions. One measure
is what, fraction of the circle the true region leaves uncovered. Let At equal the area of
the true region and let A, equal the area of the approximating circle. Then the fraction
just mentioned is given by A . When the approximation is good. however. we want to

A ,-A*

know the relative error from the true value, which is giveni by A Using the fraction
of the area, when the uncertainty circle over-bounds the true region and using the relative
error when it does not. the error measure is

{ 4,-4 f A , > At,

A- , otherwise.
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where the sign is used to discriminate the two cases. This expression is tile same as

A, - .A,

max(A AA,.t)

II this expression, the max is needed even though in theory 't,. > At. because thie met hod
use(d below to compute At can overestimate it a little when the circular approximation
is good.

Experiment 1: Accuracy of uncertainty circles for random models

If we are using uncertainty circles in a recognition system, we wish to know how often to
expect the uncertainty circles to be correct. In terms of thie error measure (Equation 3.1).
we wish to know what percent of the time the maximum value of the error measure will
be at most, say 1,%. or 10%. Conversely, what will be the maximum error 90V of the
time, 950 of the time, or 99X of the time*?

To estimate these numbers, I ran a series of trials to simulate an actual system and
computed the error measure for each. The percent of time the error measure is expected
to satisfy some criteria is estimated by the fraction of trials over which it satisfies that
criteria. For an actual system, I consider an alignment algorithm that selects triples of
points from an image and matches them to triples of points from a model. I assume
that the points in the image effectively arise at random. which is reasonable if the image
contains significant clutter.

Mclhod

This experiment runs one hundred trials where a model is projected into an image
andI the error measure of Equation 3.1 is computed for each model point. In each trial
a random triple of image points is matched to a random triple of model points taken
from a randomly-generated model (see Appendix C for details). The three-point match
is used to project the model into the image. which gives the nominal image locations of
the model points. As described in Chapter 2. except for model points in the plane of the
matched model points, there are two possibilities for each nominal image location.

Using ( = 5, the (-circles around the three image points are sampled uniformly at
twenty-five points each (see Fig. 3-3). Every triple of points between the samples on the
uncertainty circles is matched to the three model points. Each match is used to compute
the image locations of all the model points. This results in a set of boundary and interior

1points for uncertainty regions. The area of each region is computed by scanning its points
into an image and counting the number of pixels within the resulting image boundary
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(this step is explained further in Appendix I)). There are two sets of boundary points
correspond(ing to the two weak-perspective solutions (Chapter 2), which results in1 Iwo

areas per uncertainly region (see Appendix D).

Given tihe boundary points for an uncertainty region, the radius of the corresponding
uncertainty circle is obtained b\y taking the maximuml distance from the nominal point
to a boundary point. For a radius r. the area of the circle is r'.

f6tsuitbl and Disciofl

Over tile 100 trials, 116:3 uncertainty regions were tested. The average area was 58:1.5.3
for the correct uncertainty regions and 662.43 for the approximating circles. Fig. 3-1
shows a histogram of the percent errors in the circular approximation (using the error
measure). The largest peak of the histogram is at 0. The average percent error is -10.82.
the median is between -I1 and -12, and the range is [-35.11.81.651. Negative errors
occur because, when the fit is good. the method used to compute the true regions may
actually overestimate them a little (Appendix D). The large negative errors are all for
situations where the circles are very small (radii between five and eight pixels)- the error
measure is sensitive to these cases because of the slight overestimation in the method for
computing regions. The errors of particular concern are large positive errors. which arise
when the uncertainty circles are large overestimates. As will be seen next, such errors
occur rarelY.

By summing up to an index in the histogram and then dividing by the total number
of entries, we get. the fraction of time that the error was less than that index. Doing so
gives that 96.73V of the time the error between the true region and the approximation
was less than IV, and 97.9-1X of the time the error was less than 10V. (Converselv, the
maximum error 90V of the time was IV . 95V of the time it was also 1V. 98¶X of the
time it was 10(, and 99V, of the time it was 51(X. These results suggest that uncertainty
circles are generally very accurate.

Experiment 2: Accuracy of the uncertainty circles for the telephone model

The experiments on random models indicate that for most objects the circular approx-
imnations are good. To see how accurately random models reflect true objects, I took a
model of typical object, for the system to handle. a telephone (Fig. 3-2). and re-ran the
same set of trials. The telephone model was built by hand. The model points are listed
in Table :3.1. The first eight points were measured in inches on the actual object. and
the last two were added to make the appearance of the model more complete.
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Figure :3-2: A telephone and a model of a telephone
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x V z

1 0 0 o
2 9 0 0
3 9 4.625 0
4 0 4.625 0
5 0 0 1.625
6 :3.5 0 :3.5
7 :3.5 4.625 :3.5
8 0 4.625 1.625
9 9 0 :3.5
10 9 4.625 :3.5

Table 3.1:
Points on the telephone model.

Mcthod

The method is the same as in Experiment 1. except that the telephone model was
used at every trial instead of a new. random model (Fig. 3-3).
Rf.tilts a,•d Discussion

For 100 trials with the phone model. 1092 uncertainty regions were generated. The
average area was 495.59 for the correct uncertainty regions and 450.13 for the approxi-

mating circles. Notice that this time the average area for the overestimates is lower than
for the exact areas. This is because, as mentioned earlier, the method used to compute
the true regions can overestimate them a little when the fit is good (Appendix D). 1 his
effect turned out to be stronger than the overestimate ir: the circular fit. because very
few of the circular fits were poor.

The resulting histogram for the phone model is shown in Fig. :3-4. overlaved with
the histogram for random models. The distributions are similar, with the phone model
having a smaller range of values. The average percent error is -10.72. the median is
between -11 and -12, and the range is [-31.37.27.02]. Observe that the average and
median errors are very close to those for random models.

For the phone model. !98.01/( of the time the error between the true region and the
approximation was less than 1V , and 99.08'X of the time it was less than 10/. As before.
the maximum error 90V and 95V/• of the time was 1%. This time, however, the maximunm
error 98V/ was also 1%. Further, 99V of the time the maximum error was 10'/( instead
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Figure 3-3: Propagated uncertainty regions for a telephone model (both solutions are shown).
The two small, unfilled circles are sampled (-circles (the third one is occluded). Observe that
the propagated regions appear circular.

of 51/,. So it appears the circular fits work better for the specific model of a telephone.

3.3 Cases Where Errors Are Greatest

This section looks closely at the cases where the errors are large. Doing so may help
to infer the situations where circles are poor approximations. which is important for
knowing when the uncertainty circles badly overestimate the true regions. Also. knowing
when the approximation breaks would allow for avoiding these cases or handling them

specially.

Of the one hundred trials on random nmodels. there were two which had errors greater
than 25%. For each trial. Fig. 3-5 displays the uncertainty region and uncertainty circle
that had the largest error. For one trial. the largest error was 7S.8/A. The model point
with this error had extended affine coordinates (2.037. -2.227..01:368) (extended affine
coordinates were defined in Chapter 2). For this trial, the three matched model points
were (15.-74.-112), (-48,57.-7), and (-3.759.-70). and the three matched image
points were (296.116). (132.230), and (120.336). More interestingly, the angles between
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Figure 3-4: Histograms for 1163 uncertainty regions using random models and
1092 uncertainty regions using telephone model.
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Figure 3-5: Largest errors for random models: Si.7 7V (upper left ). 78.8'7( (bottorn
right)

these points are

24.390. 107.030. -18.58° for the model points
2t.150. 107.990. 47.860 for the image poinis

Not ice that these angles are very close. (Geometrically, this means the plane of the mo(lel
points is almost parallel to the image, a situation which Chapter 2 warned was unslal)Ie.

For the other trial, the largest error was 81.7V . and the extended alfine coordinates of
the corresponding model point were (-.7151. 1.404..002413). The three matched model
points were (9, -19. 170). (-3.35.6). and (-83.2.537). The three matched image points
were (272. 191 ). (34, 198). and (101,314). The angles between the points are

35.400, 86.500. 58.100 for the model points
34.010. 84.280. 61.(67c for the image points

Again the angles are very close, which means the plane of the matched model points is
almost parallel to the image. These cases suggest that we should be cautious with the



Figure 3-6: Largest error for the telel)hone model: 27.0;V

uncertainiy circles when the model plane is nearly parallel 1o Itlie image.

The true uncertaintv regions pictured in Fig. 3-5 have strange shapes. The concavity
in the larger region is (tue to the interior of the region not being filled, which is a result of
sanImpling only the boundaries of the error regions of the matched image points. Ignoring
lhe concavitv. there is an almost straight line bounding part of the region. The source of
this line is the way the uncertainty regions are computed. As explained in Ap)p)endix D.
the propagated points are separated into two groups in order to handle the two solulions
for pose (see (Chapter 2). The points are separated according to whether H1 or H2 from
the pose solution is positive or negative. For Fig. 3-5. if all the points froni both I solutions
were plotted, then a smoothly curved boundary for the entire region could be expected.

For the phone model. there was only" one trial out of the one hundred which blad
errors greater than 25V. and the largest error in this case was 27.0(/(. The uncertaintv
region and uncertainty circle are shown in Fig. 3-6. The extendled affine coordinates of
the point with largest error were (.02475.1.3611.-.000032). and the angles between the
mno(lel and image points were
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Figure 3-7: Smallest Errors: -31.4/( and -35.1'X,

:32.800, 57.200, 90.000 for the model points
77.070, 61.360. 81.570 for the image points

Two of the angles are close, but not as close as they were for random models. At the
same time, the worst-case error is not nearly as bad as for random models.

Fig. 3-7 displays the regions with the largest, negative errors for the trials on random
models and the phone model. Recall that negative errors arise because there may be
extra. pixels counted along the boundaries of the true regions when computing the areas
(see Appendix D). From the figure, negative errors can be as small as -35.W and the
approximation visibly be good.

In summary, we can infer that. in an alignment system that tries many or all pairs
of point triples for aligning a model to the image. situations with large errors could
be avoided by checking whether the angles between the points are similar. However.
this may lead to relying on an arbitrary threshold. Consequently, it perhaps would be
better to handle these cases specially by using another technique such as that used in the
experiments, namely, to sample extensively and then walk the boundaries of the resulting
regions.
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3.4 Computing Uncertainty Circles

Given that circles centered at the nominal points approximatev well tI ie uncertainty region
boundaries. all that is needed is to compute the radii of thlie circles. Since oiny oiw
b)ound(lary point is needed to compute tihe radius, a straightforward apl)proach is to sample
points fronm the error circles around the matched image points and lake the maximunm
distance from tile nominal point as the radius. This process will he efticient if few samplhe
p)oints are required,.

Experiment 3: Using fewer sample points for random models

To see how few sample points are needed. this experiment tests, for various numbers of
p)oints, n• and for a series of trials, the percent of time (fraction of trials) that the error iii
using n points instead of twenty-five is less than some limit. Twenty-five is the numuber
of points used in the last two experiments.

M.(hod

A series of one hundred trials are run using random image triples matched to random
model triples from randomly-generated models. using the same method as in Experi-
ment 1. For each trial, the error circles around the matched image points are saml)led
uniformly at twenty-five points and ten points. For each propagated uncertainty region.
the error in using the smaller number of sami)les to using twenty-five samples is comp)uted.
This is repeated for nine, eight, and seven sample points as well.

RF.sulls and Discussion

The results are shown in Table 3.2. It may be observed that the percentages (10 not
strictly decrease as fewer sample points are used. This can be explained by the fact
that the circles around the image points are sampled uniformly. so that using different
numbers of sampled points can give different samples on the circles. Consequently. when
the percentages are close, there may be cases where fewer sample points do better. Nev-
ertheless, this effect should be small. Notice that the average percent error does indeed
increase monotonically.

We can use Table 3.2 to pick a reasonable number of points for sampling tihe image
error circles. From the table, if we permit 5/ error, then using eight sample points
instead of twenty-five can be expected to be accurate over 99V of the time. Also. the
average error in using eight points is very small (1.1:37%).

A better feel for how accurate is the use of fewer sample points is given by statistics
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1 X 2(/( 3V 4/ 5(7 (i 6 ave max min

10 72.06 93.12 98.61 99.13 99.22 99.56 0.684 21.97 -. 34
9 57.27 84.16 98.00 98.70 98.87 99.04 1.031 31.60 -.37
8 55.61 75.98 90.4:3 98.87 99.39 99.57 1.137 17.12 -.-19
7 46.30 6:3.27 77.89 91.65 97.91 98.61 1.670 25.53 -.31

Table 3.2:

Percentage of tinie error was less than 10/-617( for different numbers of sample points. Also shown are

the average, nmaximum, and minimum percent errors over all the trials. Results are based on 1149

propagated uncertainty regions using random models.

ave max ramn ave percent mnax percent mrin percent

10 .05 2.55 -.05 .3-14 11.67 -. 17
9 .08 :3.87 -.03 .521 17.30 -. 18
8 .08 3.24 -.05 .573 8.96 -.24

7 .13 4.21 -.02 .844 13.70 -. 16

Table 3.3:

Differences in radii for different numbers of sample points. Results are based on 1149 propagated
uncertainty regions using random models.

on the radii, shown in Table 3.3. From the table, the average difference in the radii for
eight sample point~s was .08 pixels. and the worst case difference was 3.24 pixels. Relative

to the radius for twenty-five points, the average difference is .5 7 3 X7(, and the maximum

difference is 8.96X.

Experiment 4: Using fewer sample points for telephone model

Aft th od

This experiment is the same as Experiment 3. except that the phone model is used
instead of random models.

Residls and Discussion

Tables 3.4 and 3.5 give the results. From Table 3.4. we again can use eight points
to limit errors to 5X7 over 99V, of the time. From observing both tables, it appears that

using fewer sample points works slightly better with the phone model than with random
models.

To illustrate the use of uncertainty circles, Fig. 3-8 shows an example of the propa-
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1V 2(/ 3V -1 V 5./ 6V% ave Max mlmlil
10 66.40 91.91 99.37 99.55 99.64 99.6-1 0.726 8.55 -.33
9 60.83 84.19 98.02 99.46 99.55 99.55 0.913 13.19 -.33
8 62.15 91.91 99.37 99.55 99.64 99.64 0.981 11.76 -.30
7 46.46 64.24 80.32 92.81 98.38 99.55 1.532 12.80 -.33

Table 3.4:
Percentage of time error was less than 1%7(.-6(7(, for different numbers of sample points. Also shown are

the average, maximum, and minimum percent errors over all the trials. Results are based on 1113

uncertainty regions using the telephone model.

ave max min ave percent max percent min percent

10 .05 0.69 -. 05 .365 4.37 -. 17
9 .06 1.30 -. 02 .459 6.83 -. 17
8 .07 1.12 -.03 .494 6.07 -. 25
7 .10 1.23 -.03 .772 6.62 -. 16

Table 3.5:
Differences in radii for different numbers of sample points. Results are based on 1113 uncertainty regions

using the telephone model.
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Figure 3-8: Propagated uncertainty in a real image, which was provided by David Jacobs. "rie three
smallest circles correspond to assumed errors in the matched imaage points, and, given those errors. lhe
larger circles show the sets of possible locations of the other corner points of the telephone.

gated uncertainty circles, where eight sample points were used. The three smallest circles
correspond to the assumed errors in the matched image points. which in this example
were matched correctly. For the unmatched model points, the other circles show the
regions to be searched for matching image points. The self-occluded model points were
removed beforehand. Still, some of the remaining corner points are occluded by other
objects, and the uncertainty regions provide a means to reason that this is so after a
relatively small amount of search in the image.

Notice that the sizes of the propagated uncertainty regions vary considerably for
different model points. Consequently, an approach that relies on fixed-sized error bounds.
as in [Iluttenlocher88]. can lead to correct matches being missed (when the bounds are
too small), and incorrect matches being accepted (when the bounds are too large and
include spurious image points).
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Met hod *Iodels Tvpe T1
lincertaintv (Circles Randonm Solid .003722
IUncertainty Circles Phone Solid .003747
Bounding Polygons Random Solid .008279
Exact Circles Random Planar .002783

Table 3.6:

Expected selectivities of point features.

3.5 Expected Selectivity of Point Features

The probability that a feature distributed randomly over an image falls into an uncer-
tainty region is known as the skIclirily of the region [(rimson92b]. This quantitlv is
useful for analyzing the reliability of recognition svst ems [(rimson92a] [(rimson92b].
including, as will be seen in Chapters .5 and 6. the system proposed here. For point
features. the selectivity is the area of the region divided by the image area. -:. where
the area of the region takes into account the uncertainty in the unmatched image points
by expanding the propagated region outwards by (.

In the past, the concept of selectivity' has been applied to alignment where the models
are flat [Griinson92b], and also to alignment with solid models but using a different un-
certainty propagation technique [Grimsou92a]. When the models are flat. the propagated
uncertainty regions can be computed exactly. It would be interesting to see how much
the chance of a false positive increases from planar to solid models. Also, it would be
useful to know how the uncertainty propagation technique used here compares to the one
in [Grimson92a]. We can use the expected selectivity to make these comparisons.

Experiments 5 and 6: Expected selectivity of point features

Mcthod

To compute the expected selectivity, I re-ran 1000 trials of the same type as ili Ex-
periments 3 and 4, except five was added to each radius before computing the area. in
order t~o account for expanding the uncertainty region outwards by c = 5 pixels.

R(sjulhs and Discussion

UTsing random models with eight sample points over 1000 trials gave 11349 propagated
regions with average area 973.25 square pixels. ITsing the phone model with eight sample
points over 100 trials gave 11085 propagated regions with average area 979.78 square
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pixels. For anl image of size -15-1 x 576, the resulting selectivities along with those for
[(Grimson92a] and [(Grimson92b] are shown in Table :3.6. The expected selectivity for the
uncertainty circles is about half that for [Grimson.92a]. which implies that the uncertaint N
circles should give significantly better performance. Furthermore, it appears that the
selectivities of solid models are only slightly greater than for planar ones. \We canl infer
from this that, when point features are used. recognizing solid objects with alignment is
a only a little more sensitive to false positives than retognizing planar objects.
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Chapter 4

Uncertainty in Line Features

The preceding chapter dealt with uncertainty in the predicted locations of point features
(step 2c of the alignment algorithm of Section 1.3). A set of distinguished points. however.
usually is not reliable at identifying a model in all image. (Consequelntly. recognitionl
systems often use more extended features such as line segments for verification [Bolles82]
[Goa(d83] (Lowe85] [Avache86] [HoraudS7] [Huttenlocher90]. This chapt er extends the
uncertainty analysis of the preceding chapter to line features (Section 4.1 ). Furt hermore.
a formula is derived for selectivity for line features (Section -1.2). The selectivity for lines
is demonstrated to be significantly less than for points (Section A.3).

4.1 Line Uncertainty Regions

Section 3.2 showed how to compute uncertainty circles to bound the propagated uncer-
tainty in predicted model points. We can use this result to bound the uncertainty in
predicted model line segments. First, for each model line segment, calculate the uncer-
tainty circles for its endpoints. Next, if we ignore fragmentation and partial occlusion, an
overestimate of the set of image line segments that could match a model line segment is
given by the set of all line segments connecting pairs of points in the two circles. To then
allow for some fragmentation and occlusion, we would also accept any sub-segment of
one of these line segments. We can find all candidates for a given model segment by first
gathering all image line segments that lie entirely within the uncertainty region formed
by the uncertainty circles and their common outer tangents (see Fig. 4-1). Then we will
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lFigure 1- 1: Region to search for candidatc linze segmients

keep only the line segments that can he ext endedl to Int ersect hothI of the ulicert aint \

c ircles.

4.2 Selectivity of Line Features

Thie selectivity of a fine uncert aintvy region is the chance that a spurious line segmnent
randlomly fall,, into it. Ideally, the linie selectivityv could be estimated by the chance
that thle endpoints of a random line segment fall1 wit hini thle poi nt uncertainty regIioS

of' a predlictedl model segment's enidpoints. WVith fragmient at ion andl occlusion, however.
the endpoints of thie corresponiding imiage segment miay not appear in t hose regions. TO
allow for either endpoint to he occluded. the last chapter treated ever 'y model point
indoep~endent ly. Byv so doincý. at least one- of the end~points is requtired to be unloccluded.
In addoitioni. t he constraint from the orientation of a model segmient Is lost. Instead of
looking for end~poinits. we c-an look for pieces of the predicted modlel segments. as described
in Section -1.1. If pieces of line segments are used, which still constrain thle orientat ion
a~no part ial],\ const~rain the length. thle select ivityv for line segments Cal) be expect ed to
lbe much less than for points.

4.2.1 Non-overlapping uncertainty circles

This section considers the case in which t~he uncertaintY Circles for the endpoints (10 not
overlap, which is the most common situation. C onsider an iniage segmntnii of known
length a~nd orientation. There is a set of translations that place the segment within
the image. The line select ivity equals the fraction of these tra~nslations that place the
segment within the line uncertalinty regioni. As a note. the set of translations of a line
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Figure 4-2: Region of translations with orientation constraint and rectangular
uti)per bound.

segment of known length and orientation is the same as its configuaratio. s.pact [Lozano-
PNrezS7], since a translation determines the position of every point on the line segment.
The configuration space of an image segment with respect to an uncertainly region can

be obtained by shrinking the region along the segment's orientation and biy its length.

Examples of the constraint from an image segment's orientation are illustrated 1) tihe
shaded regions in Fig. 4-2. The figure shows two cases. distinguished by the orientation
of the image segment relative to the orientation of the common outer tangent. which
from Fig. 4-3 is given by

0
1 = sin (4.1)

As shown in Fig. 4-4, the orientation of an image segment within the uncertainty region
is bounded by the orientations of the common crossed tangents of the uncertainty circles.
Letting 02 be the maximum allowed orientation of a candidate image segment. from t lie
figure

0 2 Sil L (4.2)

mmlt Im m• • !L
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R

Figure 1-3: Orientation of the common outer tangents to tihe circles.

R

L
r

Figure 4-4: Orientation of the common crossed tangents of the circles. This is tile
maximum possible angle of a line segment with an endpoint in each circle.

Note that 01 exists iff L > R - r, and 02 exists Oi L > R + r. If the uncertainty circles
(1o not overlap, then L > R? + r.

Starting from the region of translations with orientation constraint, a set of transla-
tions with length constraint also is obtained by shrinking the shaded region in Fig. 4-2
1, the length of the image segment. The area of the region can be computed by moving
the image segment perpendicular to its orientation, as shown in Fig. 4-5. parameterized
bY it. The area is given by summing the distances between (.ri. yi) and (.r2. Y2) over the
range of u. Let ( be the length of the image segmnent. Appendix E.A shows the area is
given by,

{ P::"" (si + LcosO + - + S 12) du

A (L if Lsin0 < tR + r. (4.3)

0 ot herwise.
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R

Figure 4-5: ('omputing the area of a region of translations for an image line
segment of known length and orientation.

where tu,,ax involves a solution to a quadratic equation whose coefficients are given b\
complicated expressions.

(Computing the line segment selectivity with this formula is messy, and so instead I
compute a close overestimate. Fig. 4-6 shows a rectangular box which can be used to
bound the range of translations. For comparison. Fig. 1-2 shows the rectangular box
surrounding each corresponding line uncertainty region. From Fig. -4-6. the base of the
rectangle is R + r + L cost0. Further, the height of the rectangle is 2r for the top picture
where 0 < 0 < 01, and H - r - L sin 0 for the bottom pict ure where 01 <_ < 02. Observe
that for aln image segment of length ( to fit in tie rectangle. ( must be less than or equal
to the base, R + r + L cos 0. After shrinking the rectangle along the base by (t ihe area
of the region is

(R+ r+ Lcos0 - ()2r if 0 E [0.O,]0 (< H+ r+ Lcos0.
,= (R+tr+Lcos- 1)(t?+tr-LsinO) ifOE[Oi,0 2 ]. (I<-+r+Lcos9,

otherwise.

01.1)
Note that f + r - L sin 9 > 0. since 9 <0 2 = sinl L

With respect to the image, Fig. 4-7 shows that the area of translations for the same
image segment is

A 1 = (w - ( cos i)(h - (sin 01) (4.5)
The selectivity of a random line segment of known length and orientation is -A]*

In general. there will be several line segments that fall within a line uncertainty
region. and the line segments will have different lengths and orientations. To account
for orientation, we can assume that random line segments are equally likely to fall at
any angle. Then we can integrate the formulas for A and A 1 over their resp)ective ranges
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Figlurv 1-7: Rceiioii of trauislat 11)1 of' a line segmenti over all iunlapc.
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of allowable orientations to get volunmes of allowable) posit ions of a random line segment
(with known length). Integrating the two area eXpressionls in Equation .-1. over all

arbitrary lange . gives two (orresponding volume exl)ressiolns (see Appendix E.2):

v1,,'i,,'• = ( R/ + r -()21r(•,,2 - ,ýj - 2rL(sin ,_> - sli,,: •') (4.6)

(I? + O + 1.r)(-' 2 -.. 1)+ (B + r - t)L(cos.,.. -cos.,|)
I 2(S1'

+(I? + r)L(sin,, 2 - sin2.,i) - "LI(sin2 - i ) (-1.7)

From Equation 1.1. the range of 0 is divided into two intervals at 0 01. Also in
Equation 1.4. the length of the image segment constrains the range of orientations such
that I < 1R 4 r + L cos 0. or equivalently. cosO > '-(R+r) or 0 < O. where

L

o=Cos- I (I-(B +1r)).

Note that o exists iff R + i' - L < t < R + r + L. The first inequality holds since the
circles do not overlap. and the second must b)e true for thlie image segment to fit in the
uncertainty region (Fig.-4-1 ). From these constraints. the volume V that corresponds to
the area A in Equation 1.4 is given by

[ 1 (O.o) if o < 01. /< + r + L.

1 2 1 c|(0.-0)+c(101.o) if0i <_) 02. 1< Rf+r+ L.j A1 (0. 0) + 12( 0
1,.02) i 02 < .- < IR + ' + L.

o ot lierwwse.

Inmtegratiing A/ (l'quation 4.5) from 0, = -7/2 to 01 = -,,/2 gives

I, =,wh - 2((w + h) + (2 (1.10)

The select i vitv equals L

Tlese equal ions assume I hat th le lengt h ( of t hie image line segment is knowni. I would

be (coliveiielt to ji1tegrat(e otl thlie length as I did for orientation. but ii real inages it is

[lot fair to assinime that all lengtlhs are equally likely. One possibIlIty is to measure lIhe
(list 1111 loull of, "i iage, segill(,,nt I(,ngilis over a large set of IYvpical imiages. andI inteltrat e

over Ilie (listril)utlhii..\ simpl)e(r app)roach is It( mieasure t he a verage length of all image
segmeli t and use t( lie average lengilh for f in t he albove eqluationis. Alternativcvly. it iiiav
Ibe possilPIe to estiliiiat(e thlie percentage. say (o. of a mode' segm1ient t hat is trokin 1u) by
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the feature (let ector: this gives t -- (I - ()L [(rinison.9tl].

4.2.2 Overlapping uncertainty circles

Occasiona~llv t lie uncertaintY circles may overlap. eli her bI int ersect ion or inclusion. The
uincertainty circles intersect if R - r < L < R + r. In this case 02 is undefined. unless
L = -+ r ( Equation 1.2). Also. o will be undefined if I < H + r - L (E"quation 1.8). but
in this sit uat ion t lie lengt h constraint is reached after 0 > T./2. To avoid redundai'(. we
are only interested in orientations of the image segment that are in the range [0. 7,/2]. So
for convenience we define o to be r/2 whenever t < R + r - L. As with t he sit uat ion of
non-overlapping uncertainty circles, there are two cases for tile height of the rectangle.
depending o01 whether the orientation of the image segment is less than or greater than
Of = (,,M-I) (see Fig. 41-8). 1i addition,. however,. there are two cases for tie base
of' tile rectangle (Fig. 4-8), depending on whether the orientation is less than or" greater
than

-f 7,-/2 - 01 = co.,i (L 1 ~ .. 1

There are t wo basic rules for computing tlie height and base of t lie rectangle: (I) When
0 < 0. use 2r for t he height: ot lerwise use Rf + r - L sin 0. (2) When 0 < O'l I use
H + r + L cos 0 for tile base: otherwise use 2hB. These two rules lead to four area foirmulas:

aI = (Ht+r + Lcos0-0)2r (1.12)
a2 = (R + r+ Lcos 0- t)(R + r- Lsin 0) (.

a:ý = (2/?¢- ()2r (LIl-1)

a. = (21?- 1)(1?+ r- Lsin0) (1.15)

"To get t he correspolldi fig volunii fornitulas. we need to integrate these formulas over the
range of 0. Not]ice that tile first two formulas appear in Equation 1.A: consequentlx.
vI (% I. 2 ) and r2 (4'; . ;-') are given by Equations -4.6 and 1.7. respectively. From Ap-
pendlix E..2. we have hat

1'd•,.•:,,) = (21?- 1)2r(,'2 - : ) (4.16)
(21?t- -')(J + r)(f, 2 -- i ) + (21?- I)L(cos: 2 - cos' 1 l) (4.17)
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a b

C d

e

Figure -1-8: Cases where uncertainty circles intersect. The orientation of the image
segment increases from picture a to picture e. Let r" be the radius of the smaller
circle. I? be -ie radius of the larger circle. L be the distance between the center

points. 0 be the orientation of the image segment, b be the base of the rectangle.
and h be the height of the rectangle. Then
a. 0 < 01 . b = R+ r + L cos 0. h = 2r
1,. 0=01. h= I?+r+Lcosj0, h =2r= R+r- LsinO
C. 0 <•0 < 7r/2-Oi. h =R + r + Lcos0, h = R + r - Lsin0
d. 0= 7r/2-0 1. h= I?+r+Lcos0=2h 2 , = R+r-Lsin0
e. 77/2-0 1 < 0. b= 2R. h = R+r- Lsin0
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Rules I and 2 apply while 0 < o: otherwise the image segment is too long it) fit in
the rectangular box. However, this constraint only applies if o < 0', because as sooni as
0 > 0'. the base of the bounding rectangle does not change anY more (see cases d anil e

ill Fig. I-S). Therefore. if o > 0'. the length of the image segment does not constrain
the range of orientations, in which case the maximum orientalion of the image segment
is 7r/2 since the uncertainty circles intersect.

As a final constraint, there exists some volume of translations as long as ( < I?+ t+ L.
because then the image segment fits in the rectangular box when 9 = 0. which is wheli
t he orientat ion oftlie image segment is the same as the orientation of the model segnient.
Otherwise the volume of translations is zero.

Putting these constraints together with the volume expressions.
1'12(0,.0) if o < 01.0'l. / _</R + r+ L.

Cl(0,O1) + c2(0.t o) if0, <o< 0'. K<R r+L.
. 2 . io(O. O, ) + z,2(090•) + v(,. -/2) if 01 0' < o. I < R + r+ L.

v t(0.90,O)+ v.3(0'9.r/2) if0' < o < 01. 1K< ?+r+ L. (1.1)

I?(O.O',) + 03(O'.O,) + 1'4(01.-r/2) if 0' <_ o. 0 < ? + 7- + L.
0 otherwise.

If the circles overlap but do not intersect., then the smaller circle is contained ii the
larger. as in Fig. 4-9. In this case. L < R - r. After shrinking by I along the base. the
rectangle in the figure has area (21? - ()2r. Integrating this expression gives

I={27-ri(2R -t) If (t<2R?.

0 otherwise. (1.19)

When the uncertainty circles overlap, the selectivities for lines may be larger than
for points. This is in part because for lines we did not insist that the endpoints be
unoccluded. In addition. when the circles overlap the rectangular upper bound is not as
tight an estimate. Since we are using line features to improve on points, we could prevent
lines from doing worse by instead using the selectivities of the endpoints whenever their

average selectivity is less than the line selectivity. In effect. this insists that the endl)oint s
l)e unoccluded if the predicted model edge is short enough that the endpoint uncertaintv

regions overlalp.
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2R

2r

Figure 4-9: Rectangular upper bound for when the smaller uncertainty circle is
contained in the larger. or when L < R -r.

4.2.3 Summary

Given a model line segment, we can compute its selectivity. p. as follows. Let r and I?
b)e the radii of the two uncertainty circles for the endpoints of the line segment. such
that r K< R. r and ?R can be comp)utedl using the technique giveni in Chapter 3 or else.
if the models are planar. using the known analytic solution. Next, let L be tile distance
between the centers of the two circles, and let ( be the expected length of a random linr
segment in the image. Define

I')(.1 ,.-'') = (R + r - ()2r(,: 2 - w ) + 2rL(sin 2 - sinR ,:)

02 ( '1,1-;2)= (ft + ()- )(R + r)(w2 - - + (R + r - ()L(cos.4.•, - cos,'l)
1

+(R + r)L(sin ,;2 - sin, 1) -u L 2(sin2.' 2 -I

1a(-'3 .•1ý 1 = (2R - ()2r(-.'2 - w1 )

1'4 (•,)1, =12 (21? - ()(Rt + r)(• 2 -+ 1 ) + (2R - ()L(cosw 2 - cos -';I)

If R + r < L, let

O1 = ssinril ,R + r ( t-- (R + r+

L L =L"

Otherwise, if R-r < L < R - r. let

sin -r , R-r { cos-( I ). if(>_ R+,'-L..

L = 7r2 otherwise.
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Next. if R + ' " L.

i 0 ifo<O1 . 1<f+r+L.
I] A(O. O) + c2(O-o) if 01_<o <02. 1 < R + r + L.

t' = (O.j + +2(0i.02) if 0, < 0. < R+ rtL.
o ot herwise.

Otherwise if R - r < L < R + r.

vl(0.o) ifo<' .0. < f < R + +L.

' 1(0.0 1)+1 2(01.O) if'01 •<O<. 0 < R +r+L.
(= '1(00.1 ) + t'2 (9 1 .0') + c4 ("4.(0 /2) if r 2 f <0' < o. 1< I- r + L.

c((0O.O) + 1'3(0.A ) +,,- v1(0,r/2) if0O •_0 < o. 1< tR + + L.

0 otherwise.
Otherwise if L < R - r.

S27yr(21- () if( <2R.
= {0 otherwise.

Finalh.

I rwh - 2((t + h) +± 2

'I

4.3 Expected Selectivities of Line Features

To compare the effect of line segments versus points, the next experiment estimates the
expected selectivity of line features for the telephone model. The expected selectivit v for
random models should be similar.

Experiment 7: Expected selectivity of line features for the telephone model

Mc thod

To compute the expected selectivity. I used the formula given in the last section. I ran
a series of the same trials from Experiments 5 and 6 when the selectivity of point features
was comiputed. For each trial. I used each pair of uncertainty circles that corresponds
to a line segment in the telephone model (Fig. 3-2) and computed the line segment
selectivit ies. This was repeated for various lengths of the average image line segment and
for various amounts of fragmentation. n.
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Length Ti
5 .001618

10 .001577
20 .001491
30 .0011396

40 .001286
50 .001166
60 .001033
70 .0009125
80 .0008085
90 .0007057

100 .00062:11

Tal)h 4.1 :

Expected selectivities of line features for various lengths of an image segment, using the telephone model.

0.00 000617
0.25 .001017
0.50 .001:111
0.75 .001550

1.00 .001750

Table 4.2:

Expected selectivities of line features for various amounts of fragmentation, o, using the telephone model.

I? stul.s and Discussion

For 1000 trials, the selectivities of 9560 line uncertainty regions were computed and

averaged. Tables 4.1 and 4.2 give the results. As expected, the selectivities for lilies are

much less than for points (compare to Tablc 3.6). For the telephone. we can see that the

largest selectivity using line features, .001750, is less thani half the selectivity using point
features, .003722.



('IA~IEUI.U NCERU'fN'FY PV LINE FEATUR'I'LS



Chapter 5

Sensitivity to False Positives

There are a number of important questions we would like to answer which depend on

the selectivity of a model feature. In particular, given that there is occlusion, what

percent of the total length of the model features must be matched in order to keep tle

probability of a false positive less than some limit? How does this percentage vary wih
the numbers of model and image features? Also, how many image features can there be
before the probability of a false positive exceeds some limit. that is. how much chltter

can the system withstand?

Grimson et, al. have shown how to use the expected selectivity of the uncertainty
regions to answer the above questions [Grimson9l] [Griinson92a] [Grinmson921,], and so
I will apply their analysis here. Let T7 be the expected selectivity. let ., be the number

of unmatched features in the image. let in be the number of unmatched features in the

model. and let m' be the number of point features in the model that are used for gener-
ating hypotheses. Assuming that the s unmatched image features occur independentlyv

and at random. the probability of at least one image feature appearing in a propagated

region with selectivity -7 is
P= 1-(0 -T') (5.1)

The probability of exactly k of the m propagated regions having at least one random
feature is

qk 71 Ik pyrn - (5.2)
k,

The probability of at, least k of the 7n. propagated regions having at least one random

89
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feat ure is
k-i -

wk. is tfie probability of a false positive of size V. If we iiiatlch a fixed iniage triple to all
possible moodel triples. the probability that at least one of the matches leads to a false
positive of size A- is

€.--1 - (1 - u'.( 5.-I)

5.1 Limits on Scene Clutter

A recognition scheme based on extended model feat ures will suffler from false positives

if a scene becomes extrernelv cluttered. It would be useful. tfhen. to know how much
clutter a recognit ion system can accommodate before t lie proIlability of a false posit I e is
significant. We ('all use Equat ion 5.A to estimate this limit. To allow for part ial occlusion.
let f be tile fraction of model features that mtust be( matched to keep the l)robabilit \ of
a false positive at most ý. where a is a l)reset liiiit. Substitutinig n f for A-. we want to
find the imaximuni .s such that ,,, _< Th. Tis inequality (can lbe solved nuonericallY to get
the lmlaxinmilll ..

T1able 5.1 shows the resvet s for • = .001 (the numbers for • .01 and i•= .0001
are similar). Real images cp', easily contain as mani as .500 features. The limits for the
uncertainty propagation technique of [Grimson92a] are very low. Alt hough t he iniumbers
are greatly improved using uncertaint y circles, it is on]v wben Iine segmiient s are used that
numbers of features are in the range of images with substantial amounts of scene clltter.

5.2 Accepting a Partial Match

"\'Vhen the extended features of a model are used for verification, we would like to know
what percent of the extended features imust be matched before we can stop looking for
more matches. We can use Equation 5.3 to set a threshold on this percentage such that
the chance that a false positive will arise is less than a preset limit. Specifically. given a
three-point match. can compute the minimum f such that 1,,f _< h2. where b2 is preset.
Table 5.2 shows the results for line segments. For comparison, the recognition sy'stem of
[Huttenlocher88] used f = .5 as a threshold on the percentage of the model to verify:
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Method (1 I 0.25 0.50 0.75
Line t'ncertaintv Regions 0.00( 1i61 537 1200
Line i'ncertaintv Regions 0 27) 102 341 763

Line I ncertaintv Regions 0.50 79 265 592

Line l'ncertaintv Regions 0.75 (*7 22"1 500
Line ! ncertaintY Regions 1.00 59 19W8 113
I'tcertaintv ('ircles: 31 97 216

(rinisot.92a 15 -t3 95

Ta1le 5.1:

Approximate limits on the number of sensory features for different amounts of fragmental ioll (. and

for different fractions f of unoccluded model features. Table is for =. 5 = .001. for lin, segment,-

in = ' = 200 (line uticertaintv regions), and for points n = 197 and In' = 200 (ulincertainty circles and

[(;riniso,92a]).

I 2 = .01 .001 .0001
0.00 .36 .38 .11

0.25 .19 .51 .54
0.50 .57 .60 .62
0.75 .63 .66 .6s
1.00 .67 .70 .72

Table 5.2:
Predicted termination thresholds for different amounts of occlusiun a, and for different limits , on he

false positive probability. Table is for ( = 5. 77n = n'= 200. and s = 500.

this agrees with the t-able when the amotint of fragmentation is (I = 25V/

5.3 Conclusion

The expected selectiivities of model fealttires can I)e used to estimate two important quan-
tities. The first. is a limit on the number of spurious feat tires there can be before the

likelihood of false positive becomes significant. W\ith such a limit, we can tell in advance.
given a model and an image, whether the recognition system is likely to succeed in finding
the model in the image.
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imat ches.



Chapter 6

Likelihood of a Hypothesis

In this chapter, I give a criterion which (all be used to rank a h )ypothesis of three matched
model and image points, according to how likely it is of being correct. This step is similar
in purpose to the quick cieck used hY Huttenlocher at tile beginning of his verification
stage [J1ttenlocher88]. Huttenlocher used simple heuristics to tilter hypotheses. xvherea,,
here I utilize the uncertainty propagation analysis to rank hypotheses formally. based on
a. probabilistic model.

At the point where likelihoods are assigned (step 2d of the algorithin of Sect ion 1.3).
the alignment system has hypothesized a pairing betweeli three model and image points.
and the basic question is whether or not the p)airing is correct. To make this de(er-
mtnation, the system looks for additional matches to confirm the three suggested ones.
I'sing the hypothesis, the extended model features (points, line segments. segments of
curves) are transformed and projected into the image. Then the correct search regions
are computed an(l searched for additional matches. Once the additional matches have
been collected, line segments that are nearly collinear and have proximiate opposite end-
points should be combined. Also, curve segments should be coribnied if they appear
broken. Given a set, of candidate image features for each predicted model feature, we
wish to estimate how likely it is that the hypothesis is correct.

93
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6.1 Formula for the Likelihood

To comnpute the likelihood. assume in general that all features iH tie image that (1o not
come from the model arise at randoni. In truth. such features arise from clutter in the
scene. occluding objects. and noise; so 1 am assuming the feat ures these events introduce

effectively occur at random. This assumption has been made before for analyzing the
verihicat ion stag e of recognition ali(I has yiehled accurate res Il Is [(rimson9l]. In ad(Iit ionl.
I assume that none of the uncertainty regions overlap. Let .11 be the event that the

particular matches for the model features were found. and let HI be the event that a
oive'e three-point match is correct. Then the probability that the matches arose when
the model was present is p(.111H). Similarly. the probalbility that the matches arose at
random is the probability that the matches arose when the hypothesis is wrong. which
is p(111tH). However, we are interested in the probability of H given the event .l. From
Bayes" rule.

(HI) p(II)p(H) p(IIH)p(H)

+ )(liH)p(Ji) +p(AIIH)/,(tt)

p-IMIH)(Hi-Tvi 1)

Notice that 'e also need to compute p(H). the a priori probability that the three
point match is correct. Let H,,, be the event that the three matched model points are
visible, and let Hi be the event that the three matched image points were produced by
the three model points. Then p(H) = p( HiIH, )p( H,,). If we have information about
self occlusion, we may be able to estimate p(t.. ) for different triples of model points.

Otherwise we can assume that the model is transparent. in which case p(l,0, ) is the same
for triples of the model, and hence equals the prol)ability that the mnode! appears in the
image.

As for p( HilH,,, ), this is the probability that the three model features project to within
the error bounds of their corresponding image features. We could estimate this off-line
for every triple of model features by sampling the viewing sphere and computing the
fraction of viewpoints from which the projected model points can be scaled, rotated in
2D. and translated in 2D to lie within the uncertainty regions of the three image points.

Alternatively. we could estimate (IHt III... ) at run-time. using the pose-space analysis
in [(rimson92a]. More simply, we could assmne that for the most part pose space is
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unifort l(l distribtIted. Then p(ttI, 11,1) is the probability that any poin in pose space
gives a triple coniSistelit with the image points. Since there is a point in pose space for
every imnage triple. this probability is ( w) ,,Where ( is the error lhotund for the matched
inage points and. A, is tihe area of the image.

\Ve still need to determine ) As Mentioned. p(lI1l-) is the chance the matches
occurred at random. Let r equal the number of unimat ched image feat ures. Furt her. let
pii denote the selectivity of region fi. and ri b)e t ie numbier of feat ures found in 1?,. for
I =1...... A% (Selectivity was defined in Section 3.5.) Also. let

k
I'k+l I' "i (6.2)

i1=

k
-,,+ 1 -S/,' (6.3)

i=i

From the assumption that the regions do not intersect. lk+l is the selectivity of the
background. For non-intersecting regions. the chance of r, features landing in RI, r2
landing in l?2.. rk landing in Rk, and rtk+l landing in the background is tp t4 "",'-

2 ,k+iThe number of ways to choose rl1 , r12 ..... r. features from r is given by the multinomial
coefficient.

S2. .. -2.+ ) ri 2r2! .... rk+1

so that
M ll),1 r2 .... rk+1 i? i 2  " k+I (6.4)

Next. assume t fiat if the hypothesis is correct, then the model features the system found
matches for were not actually occluded. Then we get p(AIIH) by just subtracting one
feature froom every propagated region:

p(M tf = (r- , k r,1,-, I..2-1 ,rk-I ,-•+, 6.)
p'(MI.. (r I. -172 -I - 1,, k4-1) I 1 2 " k" P"k+Il (6.5)

Dividing Equation 6.A by 6.5.

p( All H ) 7.!/1 12(6 )
- - IIH2" (I -k (6.01)p(AIH 1) (r. -k)!rir 2 •• ,.
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6.2 Modified Formula for the Likelihood

Equalt ion 6. 1 wit h Equat ion 6.6 gives the correct likelihood according to t he assulipt ioils.
but did those assumnpt lols gives us Vwe want": A(' ordi ug to tile foriunla, when an nicer-
taiity region Is small relative to the size of the image, the chance that a hypothesis is
correct increases as the number of mat(clhe(l features in a region goes ul). This is because
it is unlikely for more and inore features to randonfly fall in the same small region. The
Iproblem is that it is unclear that this behavior is desired. When there happen to be
many features in a region. then there probably exists some image event that violates the
assumption that thie features arose at random. This event most likely is not due to tile
object we are seeking. in which case we would not want the probability of the hypothesis
to increase with the number of fca.tres in the region.

A safer approach is to not use the actual numbers of features in the regions. but only
the fact that potential matches exist. For this approach. I re-define M to be the event
that matches exist in those same uncertainty regions. As before, we assume that the
inodel features represented 1 by v. are not actuallv occlluded, so t hat p( l. II) = 1. By so
doing. some hypotheses will be ranked higher than they should. If a threshold is used
to take the best-ranking hypotheses, then there simply will be more hypotheses to verify
later. \ith p(,l111) = 1, Equation 6.1 becomes

I)(HI1I) = -1 (.7
1 + p(A7-IH)(1/p(H) - ()

In this formula, p(AMill) is the probability of a randomn conspiracy, that is. tile probability
that at least one random image feature falls in every region represented bY 11. The
likelihood of this happening is the sum of the probabilities of all the ways random features
can fall in tlb regions. For r uniformly-distributed features, the chance that rl fall in
region l?, r 2 in R 2 .. . A. in Rk is given by Equation 6.4. which happens to be for the
old p(M 1-). As before. let p-+ j = - 1 pi. Also. define

k

"k+l ( 1 -7 2 -.-... k) = I'- 1i.
i=1

I will abbreviate r1,+l (r., r1..... rk.) by r .+l, but keel) in mind that r-k+l is a function

while 11k+1 is constant. Summing over all possible values of the ri's. for i = 1,2 ..... k.
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the chance of a random conspiracy is

r-k+1 r-k+2- r-rl -r I - (
1 ) 12- P 12" (r6.8)

rl--: l r2 -=1'k l I'I , - '2 -. . I'k + l I. )l~

This formula involves a largc number of coniputatiolns of the expression from Equa-
tion 6.4. The numlber of compl)utations is exponential in r and A-, where r is tle number
of unmatched image features and k is the number of predicted model feat ures for which
potential matches exist. Appendix F derives a recurrence relation that computes one
minus the same result. Let Sq, .'2. . k be the "sizes" of the uncertainty regions. and
let S, be Ithe '-size" of the image. For points, the sizes are gives by the areas of the
uncertainty regions, and for lines the sizes are given by the volumes. The recurrence is.

Q,(Sl1:Sk)( -qr(S1- + k....... k-l)
SSO=if k> 1,

q . ...Sk) = Q(Si: S) if k = 1 and S,1 _• S1 .

0 otherwise.

where 
(6.9)

T(Sj;S) = I - (6.10)

This expression has repeated sub-problems at every recursive call, such that only one
additional subproblem is generated at each level. At the bottom level, there are k ex-
pressions to evaluate, namely Q(SI, Si), for i = 1 .... k, which are the only times r is
used. Dynamic Programming, then. can be used to compute the result of the recurrence
in time quadratic in V. Further, since r is the exponent in the equation for Qr(Sj: 5,),
the time is that needed to compute the power. which is logarithmic in r.

We may ask where this approach is likely to fail. The real trouble for the method is
regions where there exist potential inatches, but the true feature is either hidden or was
not, detected. Such regions will give positive evidence for the hypothesis, even though
the correct feature is not there. In these cases, I generously assigned p(MjH) = 1. As a
result, there may be many high-ranked hypotheses instead of a few. This situation seems
likely for point features. since spurious points can arise almost anywhere. For extended
features, on the other hand, such as line segments and segments of curves, it is much less
likely for a long feature to randomly fall in an uncertainty region, and so the chance of
the true feature being covered up while random ones appear is expected to be small.
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6.3 Summary

The goal of the last two sections was to provide a means for distinguishing a few. iliost-

probable hypotheses, using the extended features of a model. For ease of use. I will
summarize the method for line segments. It should be straightforward to apply the
method to points, since they are a simpler case. I chose line segments since points are
less useful for verification, and line segments are used more commonly.

Given a three-point hypothesis, project the model line segments into the image and
compute their line uncertainty regions, making sure to expaand out the boundaries by
(. In detail, for each endpoint of a model line segment. first compute its uncertaintv
circle: The center point is at the nominal point and the radius r equals tile maximuml
distance from the nominal point to one of the 8a = 512 sample points. Iplus (. The
line uncertainty region is defined by the uncertainty circles for the endpoints and their
common outer tangents (Fig. 4-1). Next, search the uncertainty regions to see which
onees have candidate matches. Use the method of Chapter 4 to compute the volumes V
of each line uncertainty region and the volume 1I of the image. Also. let .s be the total
number of image features, let r .s - 3, and let

p(H ) 
= f 2

To use the approach of Section 6. 1. next calculate the line selectivities using 11 = 1

Then compute
p(N jIH) _____________

111/1t2 Il • t -
p(. I H) (r - k)!rmr2 ... 7'k If,

from which the likelihood of the hypothesis is

p(H1IA!) = 1

I ± ,.M ,, (1 1) "

S... inimnnm='lniilatrim nmel nlnn I I I I I I)
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To use instead the approach of Section 6.2. define the recurrence relation.

.( : k) ( I q,.(S j - 5 'k: ,S'1 ....... k- i )) + q,(Sj; S i ...... S'.- I
If k > 1.q , ( ,t S , . . .;k ) = Q ,. ( S I: S ' ) i f .= I a n d S , S ' .

xih0 
otherwise.

with

Qr(Si;: ,F) _= --

tTsing the recurrence, compute q,( I 1: I t........,,). Then let

p(H 1I3 ) = q,(I : 'I . .I .I I)

and, finally, the likelihood of the hypothesis is

1
p(HIM)

1 + p(.1IH)(I/p(H) - 1)

6.4 Precomputing the Likelihoods

For flat models, it is known that the size of the uncertainty region for a predicted model
feature does not change with viewpoint. that is, the size does not change as different image
points are hypothesized to match the same triple of model points. For solid models. it
may be the case that the size of an uncertainty region changes only a little with viewpoint,
if the model is not very elongated. In this case, it would be possible to pre-compute the
uncertainty regions for each triple of model points. In addition, for each such triple,
the likelihoods could be computed in advance for different subsets of the corresponding
propagated regions. Then the model triples could be ordered in advance according to
how likely they are of having a subset of propagated regions with a high likelihood of
being correct. Despite the possibilities, it must first be determined how sensitive are the
uncertainty regions for out-of-plane model features to changing viewpoint.
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6.5 Discussion

Iii deciding on a three-point match, the main mechianisin wt are banking on is that it is

unlikely for features to arise at random in the uncertaiiity regions. And so the more model

features for which we find potential matches. the more likely it is that the hypothesis is

correct. For the approach of Section 6.1. note that generally the ratio ii Equation 6.6

decreases as k, the number of model features for which candidate matches were found.
increases. From Equation 6.1, this causes p(HIM11) to increase, as is desired.

There is a secondary effect that realizes that finding candidate matches for manay

model features iiiv not imply that the hypothesis is correct. In particular. if matches

are found within uncertainty regions that are very large. then the matches could just as
easily have arisen randomly. It is important to know when we are in such a situation.

and to reduce our confidence in the hypothesis. This effect depends on the sizes of

the uncertainty regions, which depend on which three points from the model are being

used in the hypothesis and where the model is being viewed from. For the approach of

Section 6.1. larger uncertainty regions cause the pi in Equation 6.6 to increase. From

Equation 6.1, this causes p(HIjM) to decrease, as is desired.

A tertiary effect on the likelihood of a hypothesis is the chance that the three model

points projected to their hypothesized corresponding image points. Although it may seem

related, this issue is orthogonal to the issue of the effect on the sizes of the uncertainty

regions due to where the model is viewed from. To see this. note that if the model triple

is equally likely to project to any image triple, it could still be that which image triple it

projects to makes a big difference in the sizes of the uncertainty regions. If we suppose

the model triple is equally-likely to be seen from any direction. then it may be that

some image triples are very unlikely to arise, despite the fact that every image triple is

possible. The reason this issue is important is that it may be possible to have a match

for several model features that is unlikely to have arisen at random, but at, the same time

the model triple has ahlost a zero chance of projecting to its hypothesized image triple.

Using p(H), the analysis above gives us a way of trading off these effects.
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Conclusion

This thesis has four main contributions. The first is a geometric understanding of a fun-
daamental problem in coml)uter recognition, namely. the solution for 3D pose from three
corresponding points under weak-perspective projection (Chapter 2). A new solution
to the problem was given, and the situations where there is no solution and where the
solution is unstable were described. In addition, the new solution was put in perspective
with previous solutions, and the three most related earlier solutions were presented in
detail anid compared.

In addition, Chapter 2 showed how the image position of an unmatched model point
can be computed efficiently using the solution for 3D pose. In particular. Chapter 2 gave
an expression for the fourth point image position that did not involve going through
a nmo(lel-to-image transformation. but instead computed the position directly from the
distances between the three matched points. This is important for alignment-style recog-
nition, since the image positions of the unmatched model points are computed many
times while searching for the correct pose of the model.

The second major contribution of this thesis is an error analysis of point features
for alignment-style recognition of 3D models from 2D images (Chapter 3). The earlier
analysis of [Grimson92a] was conservative in its bounds on the prop)agated uncertainty.
and Chapter :3 showed we can do better. In fact, the analysis in Chapter :3 is almost
always a solution. which means it~s bounds are exact, notably except where the 3D pose
solution is inherently unstable. Chapter 3 showed pictures of what the true uncertainty
regions look like when the bounds are not exact. In these cases, the bounds conservatively
overestimate the exact bounds.
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1veii thlouighi the error propagatiol teclhique in (Cha)t er 1 is generally accurate.
the techlnique has 1lwe disadvatittage of' being numerical. Nevertheless. so was the oldxv

I)re\lous error propagat ion techliique. Moreover. for most recoglit ion problems. the tili e

to coilllptt" tie sotltion is effecti velv tdYlconstant. as lhoglgh lthe solutioll weIe alialvtit.

Another contribution of this thesis is a foriniila tor the sv'ectivit " of fine features

(Chapter -1). The selectivit tv of a feature call be used 1it infer the expected performance

of' recognition svst lls. It can also b)e used to set a threshold o01 how much of a model
must be identified in an i inage bef(ore the object is recognized (('haapter 5). TLo date. a
select ivit v formula for line feat ures has beell provided for recognit ion involving 21) models

and :21) data. and for 31) models and: 31) data [Grimsoni9l]. The formula derived here is
the tirst for recognit ion involving 31) miodels and :21) data.

[he fount uh major coni ribut ion is a formula for the likelihood of a hylpot liesized three-
point match (C(hap)ter 6). The formula applies to point or line features, and relies on

their associated uncertainty regions. The formula is intended to be used act iveh" ,lring
recognition to quickly filter hypot heses t hat have little sUl)jort from the image.

These four contrib)utions tie together well for building a fast and robust alit ument
syst em. The uncertainty analysis provides the correct minimal search regions to guar-
antee that no corre('ct hylpotlieses are lost, which makes the recognition insensitive to
false negatives. Further, the uncertanity regions (all be computed quickly using the er'-
ror prop)agation tec('hniquie amid the fast solution for the image position of ani unmatched
model point. Once computled. the uncertainty regions usually are small enough to be
searched rapidly for candidate ima-,' features. Then, using the likelihood formula. the
current hypothesis call he evaluated.



Chapter 8

Future Work

Hlaving t heoretic(all stud(lie(l the alignment system proposed in Chapter 1. the next step

is to build aln alignment svstetil that uses just the extenided features of a model to select

best hylpotheses. The systeui wouli be based onl geometric featutres, particuladry poiits
and line segments. Fiurthermore. the svslemn would be compared to otiher hYliotlhesiZe-
and-test techýiiques that also use 31) models and 2D images. notably [LoweS5J and [llui-

ten lochelr•].

i\not her worthhwhile st udy would l)e to build the compl)lete models suggested itt (Chap-
ter 1. This re(quires olbtaining complete 31) edge maps and extracting extended features

fronm them. Given the edge maps. it would be useful to show that they c(all be used to

reliably verify the presence or absence of the model when the model pose is known ulp to

uncertaintv in the data.

Ainot her l)roblem is to discover thc correct shapes and distributions of the unccrtiaintv

in image features. instead of just bounding them. .Jacobs observed that siml)ly adljusting

the size of the bounded error threshold makes a big difference in the effectiveness of his

grouping system [.JacobsS9]. It would be useful. then, to be able to set this threshold
autonmatically. More generally, it is expected that the errors in features differ significant ly
across images, as well as across a single image. and that they are dependent. It would
be of interest to study the feature detection process from image formation on up t.o see

how errors can alter the features of a model.

Last lv. the proposed system expects a minimal amount of grouping t~o be p)erformed.
Grouping is an area that has both received much attention and has much potential for
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im provecivi('I . Malaiv appjroachies at te~lli)t to do( grll)pin~g wvith jilst ]MVe SCgiiieiilS. but1

after 111e s(Iguueiul s have keeiu extriacted. too muuich iiihriiuilat ion has beenl host. flh're al'.

inllua techmlnu ues fo01 segment ing imuages inito legions based on iiileiisit ie [hharalicks.-].
b~it tvjpicalh\ , vluese siipl ~h luster simuilar Inutenisit ies and( (10 not take advantialge oh' higher-

level shAmp in Iorui alioll at e(Iges. ( Irouipinug shouild be pertormcd~ using i ni (lisit Iii age1s

toget hIeI(r w I t I I t I I cIr ed ges.



Appendix A

Rigid Transform between 3
Corresponding 3D Points

ais a )elId'(lixN COIII put es a rigi d transforii )bet weei two sets of three ('orresl)oln(li IIg poinl ts
usii' right- iandei( coordinate svstemis bui1t separatelY on each set of three points. A
rihit-hande(ld svst<cf is deternile(, )v an origin point 0. and t lbree perp lnd(ic'llar 1111it
v(,(t, ors. (G v'. i'). (i en thi ree poilts in space. j).i . We cal, colst ruct a right -handed

svst,'lii as follows: Let t)O, hJ, - tp0  and -i,0 - t7.2 - 70. Then let

+7 = Fo,
d = AO I
C)= Ao - (PA0O. ))O I

Let (61 : I . II. ?'U ) and (52, it2 .'. w2 .) be the coordinate syst ems so defined for the origiial
and ca iera-celliered points. respectively.

(GiveC a coordinate systen (6: u,/",. d), a rigid transformation that takes a point H)

world coordinates to a point in that coordinate system is given bv (R. ). where

(see for example [( 'raig55] ): the transformed /7 is R157+ F. Then we can bring a point 17
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I O6i I'VE 1)DIXA. 1I(~I)thANSFORt AlETI I iCE.\N3 (01R RESPONDJ.\ ( 31) POINTX S

I roiii thle original svst emi to the worldl aind t heni to thec canicra-(*eitered sv\Slt cm using

R 2 (R 1 (fi'- il) + F2 R.2 R1
1 fl+ F2 - R2 Ri'/'1

where

R2= [b12 11 1'2].- F2 i

( oisequtent iv a rigid transformnat ion ( R.0I thnat aligns the two c'oordiinat e svst ems is

R =R 2 R1
1 . F 2 - R2 R1 Tf,.(Al



Appendix B

Solving for the Scale Factor

B.1 Biquadratic for the Scale Factor

This appendix shows

4 2 2 1 ) , 2 a 2 ) = ( ý 2 2 .- • -- (- a -•2 2 ) ) 2 B •
4( R'; - do R)(. 2R0 2 - d 2 ) (R _ - R 2)-(d -d -d(

is equivalent to a biquadratic in .s.

Expanding Equation B.1.

4 W )2_ 2 2 /? .2 2 2od2

1 (R• 1 + R022 - R12)2 + Ro2(p) + R02 - 1 2 )(10 1 + (102 - di 2

+(d•, + d02 - d 2)2

(I' (- R 2 _ (R• 1 + Rý2  _ 1?2 ))

-_2 s' (2I2'1 d22 + 2[102dC (I + R 2 1 2 0d 1 + (_2 d 2

+ (4dO21dg - d• + d.2 -(d22)2) 00~ 00

as.4 -"2b.2 + c= 0,

!07
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whX'ere
1, R=, 2 - (J?2 , + 2 -

1b = 2t1 d• 2 + 2t?~d2 - (1tR + -10 2 -2 (12
, 2 ((21 4_ 2, 2 .12)

c = 4d1 d,2 - (d0 + 0 - d •2.

B.2 Two Solutions for Scale

The following lemma completes the proof of Proposition 1:

Lemma Let f be either (d)-e 2 () 2°-' e110/ or B02/Te

o.f 2 -2bf +c < 0. (1.2)

Proof:

a(f 2 - 2b.f + c

= .1( Ro R 02 sin o) 2.f -

2 (2(R ,,d•2  + 2o~d1  - 2J•Ro, ooo2dod 2o cosocos .))f+

*4(d 0 1d 0 2 si11 ,)2, from Equations 2.18. 2.19. and 2.20

2l Ro,2S20 
.= *1Rmt0( - cos2 0).f2-

RIl do2 + t0 2d+ 0  - 21o 1 R0 2d0 l ( 02 COS 0 (OS )f +(2 (2

d01 d 2 (1 - cos2 u)) (u.:)

SulppoSe that ,f = (_2 Then B.3 becomes

(1 R~ 1 'Cos2 o + 2 CoOS 0 (S'0,,, - d 1 d02 cos 2

R Rol.. . d] dI2 ICIOI
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2 do, do2 ()2

-1l?02d261 cos o - - cos l,

Suppose iiistea" that f= . Then BA becomes

4 Rol d164 do,_I-•° d OS 0 • + r d2 d cos o cos r' - dmd2cos2 tRo2  
2 2

-1' /2Cs o 2Cs o 1 (102 CO't2 o R02
,(2d o2 d o, ) 2

=l - (f•, 2 \ Ro2 Ro o - lo--, COS C.

Either way. a(f2 - 2b. + c < 0.
El

B.3 One Solution for Scale

In the •'one solution- case, we wish to know when and if b2 - (c = 0 holds. CI ng the
result of Appendix B.5. this means that

( 4 t2 - 2co + L')t + 1 + C0.

For this to hold. either

- 2cos(O + ,)I + = 0 or 12-2cos(0- .)t+1 =0.

Solving for I gives

I = cos(O +t ) ± isin(6 + /') or I cos(o - 1,') + isin(o - t,). (B.4)

where i - 1I. Consequently, there are real values of I that make V2 - ac = 0 only if
slin(o + ,,) 0 or sin(o - u= 0. These situations occur when o = ±U" and 0 ±U + 77.

Substituting into Equation B.4 gives that V2 - ac = 0 iff both ± = or o = ±"' + 7

and i= 1. where / 1 is the same as J =do• Rol Ro2"
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B.4 No Solutions for Scale

This appendix shows that there always exists a solution to the biquadratic by showing
that b2 - ac > 0. From Appendix B.5A

,.-'-...- = (, 01 ,02 ' (,2 .,_-o.io+ u, + i) (,2- .co(oo + c)

> 4(Ri0 1 0 )4 (,- , - + i) (,+ 2t + i)

- .(Ro1 do-2)4 (t - )4

> 0

B.5 Simplifying b2 - ac

In this appendix. I derive that

b 2 ( i(~f /o'(2 2COS(o + C'1 + 1) (/2 ) COS(c k, (IC = -1()1(0 (B3.5)

Where

t 02(d01
IRoI do2

From Equations 2.18. 2.19, and 2.20,

G = 4(Ro1 RIo2 sin o) 2

b = .)• 2 2/
1) 2(Rol o 2 + R02 d 0 - 2R1 Ro2d( do2 cos0cos L')- (d+1 do2 sin C O)2

Then

4(Ro.2do1 - 4Ro42doR 01do2 cos 0cos u + 2I 1 02d/ 1R2 2 +
.ll 2 2 2 . 4 4

-lIRo 2do1 do2 cos2  R2cos2  0 - 4CO1 dS2 I-2 do1 COS C o' + Io 1 do2 )

ac 16ROI Ro2dm1 do2 sin2 sin2 "

b2ac 4 (W 4 4RdRd .3ac = 4R02dol - 4Ro'2dm Rodo,2 COS 0O vo •+
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(2 + 4 cos2 _cs Ill Qsfln tu,)RO1 R02d~1 dO2

4Cos o Cos U0 + 1). where f = ( R02dui )/( R01do2)

=- 4(RI 1d02 )4 (t4 (-2(os(o + ,,) + cOS(o _ U,)) 13+

(2 + 4 cos(o + u') cos(Q - c')) 12 -2 (cos(o ±+u + cos(Q - ))I+

= 4(Ro01d 02)4 (t2 -COS(o + C,)t + 1) (2 - COS(o -UI+ I)
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Appendix C

Generating Random Image and
Model Points

This appendix describes how I generated random triples of image points. random triples
of model points. and random point models.

C.1 Random Image Triples

Image triples were formed by randonmlv selecting three 2D locations from an image: the
image had dimensions 454 x 576. 1 selected image points within a margin of 20 pixels
from the boundary. The reason for the margin is that in Experiment 1 (Section 3.2). 1
discarded propagated uncertainty regions that overlapped the boundary. In order to save
time. I used the margin to avoid generating such regions. This basically assumes that
image points close t~o the boundary can be ignored.

In addition to the constraint from the margin, another restriction I applied was to
pick image points that were at least. 25px apart and at most 250px apart. The minimum
distance is used to avoid degenerate point triples. and the maximum (distance is used to
reflect the expected size of an object found in an image. To get three points that were
between 25px and 250px apart. I began by placing the first point at the origin. (0,0). To
get a point at most 250px away from the first., the second point was chosen at random
from a square centered at. the origin of side 2 * 250 + 1 = 501px. This step was repeated
until a point was a.t least 25px away and at most. 250px away from the first, point was
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selecte(d. The third point was repeatedly chosen at randonm from the same square until
a point at least 251,,x and at most 250px from both of the first two points was selected.
This gave an arbitrary" triangle within the given distance bounds.

In order to allow the triangle to arise anywhere in the image. the triangle was then
randomly translated by putting the first point at a location randomly chosen from wit hil
the margin of the image. until a translation was found that left all three points within
the margin.

C.2 Random Model Triples

Given a list of model points, which could come from a random model or a true mnodel.
first two different points in the list were selected randomly. Then a third point was
repeatedlyv selected at random until a point was found that was non-collinear with the
first two. Three points were considered to be collijear if the triangle formed by the three
had any angle greater than 17.5°.

C.3 Random Models

All the generated models had ten points. Ten was chosen becallse it is a low bound on
the number of points in a model, or. equivalenti.x the number of propagated regions per
trial. I wanted a low bound in order to conservatively estimate how well the uncertainty
circles fit. A low bound leads to generating more propagated regions with different poses.

Trying more poses increases the chance of hitting cases where the uncertainty circles are
fit poorly.

To reflect the final appearance of the model in the image. the model points were all
chosen to be within 25px and 250px apart. Note that the initial scale of the model is
irrelevant. since scale is computed in the pose solution. To get a 3D model, the first point
was put at the origin. Then the other model points were selected at random from a cube
centered at the origin with side 501px. In addition. each new model point was repeatedly

chosen until it was at least 25px and at most, 250px from all the current model points.
As with scale, the initial translation of the model is arbitrary, since translation is solved
for when the pose is computed.



Appendix D

Computing Areas of the True
Uncertainty Regions

This appendix describes how the true uncertainty regions are computed from a model
and three matched model and(t image points. First each model point is tested for whether
it is in the Plane of tile three matched model p)oints. If so. its area is computed from the
known analytic solution for this case [.Iacobsgll.

In general, the model points will not lie in the plane of the matched model points.
In these cases. the true regions are computed by uniformly sampling twenty-five points
along the circle boundaries of the three matched image points. This gives 25:' = 15625
samples for each propagated uncertainty region. To obtain the area. first the propagated
sample point~s are written to an image. Then the outer boundary defined I)Y the points
in the image is traversed in a. four-connected walk. Lastly. all the pixels inside this outer
boundarv are counted to get the area. Observe that this method can cause the true area
to be overestimated because the pixels inside the four-connected boundary can include
eight-connected pixels that are not part of the region.

There are two solutions for each pair of niodel and image triples, which correspond
to a reflection about a plane parallel to the image (Chapter 2). In the pose solution of
Chapter 2, H1 and H2 represent the differences in the : coordinates between the first
model point and the second and third model points, respectively; the differences for the
reflected solution are therefore -HI and -H 2. To distinguish the two sets of points
corresponding to the two weak-perspective solutions, I use the nominal values of HI and
H2, which occur when the matched image points are at their nominal locations. If the
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nomiinal /I is larger, I take all the solutions with thel same sign for H, as being froin

the saiie regioll. I do the Opposite if tle nominal /1, is larger. F'or the most part.

this Illethod works to separate the two regions as long as they (10 not overlap. If the1

propagated regions do overlap, there really is on e region. and this met hod will cause it

to split.



Appendix E

Areas and Volumes of Line
Uncertainty Regions

E.1 True Area of a Line Uncertainty Region

Givxen a line segment of known orient at ion and lengt h. t he area of t hie unc eit iitYx regioli

in Fig. 1-2 can b)e Complluted )\" moving t he line segment p)erp)endicular to its orienlt at ion.

This is shown in Fig. 4-5 p)aranmttrized bY it. This section colliptutes tilte unicertaintv
region area. For simnplicity. I assuinze t he uncertaind v circles for tihe eiidpoiiit, do not

int ersect.

For a given offset u. we are Interested in tile distance between lhe outer ilntersectioln

)oijnts of the line and tihe circles. From tei figure, this distance equals

XI , (x Y i) 0- ( 2 Y2 ) 1I 1 2 -? - 1 -

Cos 0 sin 0

Putting the origin at the smaller circle. the equat ions of the line and circles are

-. r SillO + Y(osO = 11 (V.1)
.2 +.Y2 = 21 (E.2)

(.r - L) 2 + 12 = 1?2 (E.3)
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Assumning cos 0 : 0. we, can solve forq iII E'],quatioll . I alrd subst it tile Into Lqrlatior| F .2:

2 ,i + x sil.):
co ±.rsi 0\

.1 ('COS () / 1+ .. , ) 1
2= * ." +211) + (x + r',in 9)" -1' 2 'CsOS o

x.r' 2'-+-2sirr) it si-l - 'cosu-=
:== .a' -- sin 0,± + - - u- (,.,S

t

t a' =-?/sin 0- 1- - ,'COS0. ['roi Fig. 1-5.

Note that tite( discriniiant rs ;toir-niegati 'e. siluce Jllj : r front Jig. 1-5. Next. subslt lute

bOr!/ frorn E'quation E.I into E(qiation E.A:

- L) " + +xsil 0 =

= (x'- L)"cosO + (11 + a'si1n0) 2 - I c?2"os2

===> ~.r + 2( - L. 12 0 + U Sil 0).r + (12 + L, " (' -(1 2(15- (=

y" ., - I. ('05 1) - U sin 1) + l 2 - L sin Ii+ 0 )2 coS .o
==• .l-' L s'0 - 111)~l TI- • (1i1+)- coslt f) rom Fig. 1-5."

A.\aiti. tire discriillilliant is lioll-ilegativ'e: The maximum valuie of' i = rrin(r. R? - 1 sin 0)
(see Figs. 1-5 arid 1-6). and so

i < -- 1,sill(t == ut + Lsilit0 < H

= (i + L sint 0) < I? silnce ill -< i1.

("Wi\'ell .r arid .12.

____ = - l. cos0+ h +" - ( I + lsinO)-' /r - (E.1)

'I'he area A of the shaded region ili Fig. [-2 equals the ilntegral of l([ualtion L.A from

it = -7r to it = nin(r, ft - L sin 9). if the regioni exists. Tlhe region exists if titie imiage

segillent's orienitat ion is within lthe boun1ids of ' le fine iunicertailil\ regioln. ihat is. if



1-.J. I t - 1 0.\t: \ 1 LIN\V I ? ( If. I\T.\I\T I?;iO.\

L sin, ()t<+K ± i Fi. 4-1 li.iih

.1 +if I sin I - II r. l.i,

ol I Iher wisV.

°|'iis is nlt)o t Ili alvra we are it (,rest etd ini. hlowe\er. Insi ead. we want t his area hrunik
h~v the' henr h oft' he fillat) .,(1 c Let I kec the' ht-Ilhi of, the HIMa "•ll'll 1-o

('t il)it(lt I' tt'dehsired area. siilt ract I from I lie therin bel) n• int egratetd. I (plat lo t 'L. 1. 1hi

addit ill. ,'(' Iltist thallaiy the lt' 1111i1i sith" ith it egrat ion. since it Ps conistraiined Ik v .
I part lWalllar. we nieed toI kniow it' anid whert' errti heing integrated cros.,es zere, which i

- t + L. co" \/-!- - e' + 1 sil ,)2 -0 H'2 - t12 0. F'. ()

liWi 'tjuioliil lhatk it) a quadlratic iII I/:

(Aj + lti•+2k+2uA- + -kr" (E.-

whr

L sin 0 
E.

I.cos 0 - I

+" 1 l. - It2 + r - 21 cos,

2()1. cos 0 - (

Thenl

-A'A I (A. + I v'- A.'.10

"lie teriu be'ing integrated crosses zero if the discriminant is noun-negatlive. There are
two solhtitios 1 Caise squaring was used inI the algebra to obt aili Equation E.7 from

t'Aqiation r..6. If the (liscriminant is non-negativee let u- be the it from Equation F.I0(
that satislies Equalion E.6. and let t .,a, = m- (u .r. I? + r Lsin0): otherwise let
ti",,, = 1ii)(r. H + r - L. sin 0). Then the area of translations is

{ Lv"" (-( + i.L os + V (, 1-,- L Sin 0)2 - - i,,) di
.1 if Lsinl I < +r. (E. I1)

0 ol herwise.
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E.2 Integrating Areas to Volumes

,.kI? + !, + ,.<COS 0- ()-2r ( ,( + r - ()2r ,,.,,+ ,.,Lcos,,,

(1? + r - ()2rO + 2rL sinll (".12)

r) + i r+r L cos 0- ()(l?-t- r - Lsinl)d(0

- I L2 cos 

( 

sinI0 (1d

(H + OW+-0)197+r l(I? +rI.-()L cos+- (R +r)L. sin 0--I L2sin12'O J-1.1:3)

r:, /(2f? - ()2rd( =(21?- t)2O (E.1 I1)

,' /(21R-t)(1? + r- .L ild0)d( = J(2?- ()(I? + ,)do- f(21?-()LsiriOdN

= (21?- R )(l+ )00+ (2t1?- t)L cos9 (E.l15)



Appendix F

Recurrence Relation for the
Likelihood of a Hypothesis

Let A' he the event that none of the uniformly distributed image features landed iII
region RB. Then the probability that at least one image feature landed in every region is

p(M Ill) = p(N\VI A A kA.).

which implies

p(MIJH) = p(A\• V .. V NA.)

= p(N1 V V N'k. I) + p(N.,.) - p ((N.\1 V ... V A. 1 ) A N.k)

= P( 1V. . V A'k-1) + p(Nk) (1 - P(-1 V... V Nk -I Ik-)) (F.)

p(, V ... V Nik) is a function of the uncertainty region sizes. Si. for i = 1.2 ... k. the
maxinmum size, Si, and the number of uniformly distributed features. r. For points, the
sizes are gives by the areas of the uncertaintyv regions. and for lines the sizes are given by
the volumes. To make the dependency explicit. define

q,.(,S -' SI ...... 5 ) ('f p(N1 I V ... V A'.)

Therefore in Equation F.1, p(NI V... V NA.- ) = q,.(Jr ,I- S ....... k-i ).

Next. let us consider p(N1 V .. V INk.-lI'k). If event N'k occurs, that is. if no features
land in the kth region. then all of the features are distributed over the rest of the image.
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so t hat
p(A\, V ... v .\_ .k) =/r((>' -N.:

Lastl\. P(N.•) is tlhe prokalhility that all th le featurevs missed the kth region. \vhicl
equals (I - ) . l)efiiie

Q(,- , MN )

Plugging into Equation F.I. p(.Mill) is given bY (,.(Sj: S'1 . . . ... '*O)- WhiChI is deter-
mined IlV the recurrence relation.

Q ,.-( .g'l .S'k U (k S I ,.,• - ,' -: "gl. . . 'k- I ) )+ q,( ';,I: ." ...... ý;.- I

ifA-> 1.

q,.( ': , ... .. ' = Q,.( if k = I and ."-; < .

0 ot herwise.

Wherest s) i -

•~~Q (S S il l
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